Comparative study into 7 commercially available soil wetting agents and their effects on disease incidence and turf quality

Jerry Spencer BSc Hons, Cam Smith, and Craig Geeves Bonnie Doon GC.

 $25~\mathrm{May}~2023$

Contents

1	Abs	stract	10
2	Dise	cussion of Results	11
	2.1	Turf Quality	11
	2.2	Volumetric Moisture Content	11
	2.3	Surface Hardness.	11
	2.4	Dollar Spot Incidence.	12
3	Fut	ure Work	13
4	Bac	kground to Treatments	14
	4.1	Tricure (Product 1)	14
	4.2	HydroForce Ultra (Product 2 and Treatment 7 half rate)	15
	4.3	Gilba SA (Product 3)	15
	4.4	Salicylic acid	16
	4.5	Disease fighting properties	16
	4.6	Turf specific research	17
	4.7	Previous Research	17
	4.8	Propel (Product 4)	17
	4.9	Hydroforce Recovery (Product 5)	18
	4.10	H2O Maximizer (Product 8)	18
	4.11	Hydrolink Rapid (Product 9)	18
5	Tria	al Overview	20
	5.1	Turf Quality.	21
	5.2	Surface Hardness	21
	5.3	Soil Volumetric Moisture Capacity (VMC%)	23
	5.4	Dollar Spot Infection Centres	23

6	6 Results	24
7	7 Weather	25
8	8 Turf Quality on a Scale of 1-9	26
9	9 Block Effect with Treatment on Turf Quality	33
	9.1 Turf Quality at Trial start and 3 days following the First Treatment (2022-11-07)	35
	9.2 Quality 3 Days post First Treatment (2022-11-10)	36
	9.3 Quality 11 Days post First Treatment (2022-11-18)	37
	9.4 Quality 17 Days post First Treatment (2022-11-24)	39
	9.5 Quality 24 Days post First Treatment (2022-12-01)	40
	9.6 Quality 29 Days post First Treatment (2022-12-06)	41
	9.7 Quality 32 Days post First Treatment (2022-12-09)	42
	9.8 Quality 39 Days post First Treatment (2022-12-16)	43
	9.9 Quality 46 Days post First Treatment (2022-12-23)	44
	9.10 Quality 53 Days post First Treatment (2022-12-23)	45
	9.11 Quality 67 Days post First Treatment (2023-01-13)	46
	9.12 Quality 91 Days post First Treatment (2023-02-06)	46
	9.13 Quality 106 Days post First Treatment (2023-02-21)	49
	9.14 Quality 116 Days post First Treatment (2023-03-03)	50
	9.15 Quality 123 Days post First Treatment (2023-03-10)	51
	9.16 Turf Quality Reading 130 Days Post Treatment (2022-03-17)	52
	9.17 Turf Quality Reading 137 Days Post Treatment (2022-03-24)	53
	9.18 Turf Quality Reading 144 Days Post Treatment (2022-03-31)	54
	9.19 Turf Quality Reading 151 Days Post Treatment (2022-04-06)	55
	9.20 Turf Quality Reading 159 Days Post Treatment (2022-04-14)	56
	9.21 Turf Quality Reading 165 Days Post Treatment (2022-04-20)	57
	9.22 Turf Quality Reading 173 Days Post Treatment (2022-04-28)	58
	9.23 Turf Quality Reading 180 Days Post Treatment (2022-05-05)	58
	9.24 Turf Quality Reading 187 Days Post Treatment (2022-05-12)	
	9.25 Turf Quality Reading 194 Days Post Treatment (2022-05-19)	
	9.26 Turf Quality Reading 200 Days Post Treatment (2022-05-25)	

10 Trufirm - Surface Hardness

65

11 Block Effect with Treatment on Trufirm		72
11.1 Trufirm Reading Pre Treatment (2022-11-04) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 74
11.2 Trufirm Reading 3 Days Post Treatment (2022-11-10) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 75
11.3 Trufirm Reading 11 Days Post Treatment (2022-11-18)		. 76
11.4 Trufirm Reading 17 Days Post Treatment (2022-11-17)		. 77
11.5 Trufirm Reading 24 Days Post Treatment (2022-12-01)		. 78
11.6 Trufirm Reading 29 Days Post Treatment (2022-12-06)		. 79
11.7 Trufirm Reading 32 Days Post Treatment (2022-12-09)		. 81
11.8 Trufirm Reading 39 Days Post Treatment (2022-12-09)		. 82
11.9 Trufirm Reading 46 Days Post Treatment (2022-12-23)		. 83
11.10 Trufirm Reading 53 Days Post Treatment (2022-12-30)		. 84
11.11 Trufirm Reading 67 Days Post Treatment (2023-01-13)		. 85
11.12 Trufirm Reading 91 Days Post Treatment (2022-02-06)		. 87
11.13 Trufirm Reading 106 Days Post Treatment (2022-02-21) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 88
11.14 Trufirm Reading 116 Days Post Treatment (2022-03-03) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 89
11.15 Tru firm Reading 123 Days Post Treatment (2022-03-10) \ldots \ldots \ldots \ldots \ldots \ldots		. 90
11.16 Trufirm Reading 130 Days Post Treatment (2022-03-17) \ldots		. 91
11.17 Tru firm Reading 137 Days Post Treatment (2022-03-24) \ldots \ldots \ldots \ldots \ldots		. 92
11.18 Trufirm Reading 144 Days Post Treatment (2022-03-31) \ldots		. 93
11.19 Trufirm Reading 151 Days Post Treatment (2022-04-06) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 94
11.20 Tru firm Reading 159 Days Post Treatment (2022-04-14) \ldots \ldots \ldots \ldots \ldots		. 95
11.21 Trufirm Reading 165 Days Post Treatment (2022-04-20) \ldots		. 96
11.22 Trufirm Reading 173 Days Post Treatment (2022-04-28) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 97
11.23 Trufirm Reading 180 Days Post Treatment (2022-05-05) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 98
11.24 Trufirm Reading 187 Days Post Treatment (2022-05-12) \ldots		. 99
11.25 Trufirm Reading 194 Days Post Treatment (2022-05-19) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 100
11.26 Trufirm Reading 200 Days Post Treatment (2022-05-25) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 101
12 Volumetric Moisture Content (VMC %)		102
12.1 Block Effect with Treatment on VWC		
12.1 Block Enect with Treatment on VWC		
12.2 VMC Reading 0 Days Pie Treatment (2022-11-04) 12.3 VMC Reading 3 Days Post Treatment (2022-11-10)		
12.4 VMC Reading 7 Days Post Treatment (2022-11-10)		
12.4 VINC Reading 1 Days Post Treatment (2022-11-14) 12.5 VMC Reading 11 Days Post Treatment (2022-11-18)		
12.6 VMC Reading 15 Days Post Treatment (2022-11-22)		
12.0 VMC Reading 15 Days Fost Treatment (2022-11-22) 12.7 VMC Reading 16 Days Post Treatment (2022-11-23)		
12.7 VMC Reading 10 Days Post Treatment (2022-11-23) 12.8 VMC Reading 17 Days Post Treatment (2022-11-24)		
12.0 The maximum 11 Days 1050 includence $(2022 \cdot 11 \cdot 24) \cdot \cdot$	• • •	

12.9 VMC Reading 22 Days Post Treatment (2022-11-29) $\ldots \ldots $	18
12.10VMC Reading 24 Days Post Treatment (2022-12-01) $\ldots \ldots $	120
12.11VMC Reading 29 Days Post Treatment (2022-12-06) $\ldots \ldots $	21
12.12VMC Reading 32 Days Post Treatment (2022-12-09) $\ldots \ldots $	22
12.13VMC Reading 39 Days Post Treatment (2022-12-16) $\ldots \ldots $	23
12.14VMC Reading 46 Days Post Treatment (2022-12-23) $\ldots \ldots $	24
12.15VMC Reading 67 Days Post Treatment (2023-01-13) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	125
12.16VMC Reading 91 Days Post Treatment (2022-02-06) $\ldots \ldots $	126
12.17VMC Reading 95 Days Post Treatment (2022-02-10) $\ldots \ldots $	127
12.18VMC Reading 105 Days Post Treatment (2022-02-20) $\ldots \ldots $	129
12.19VMC Reading 106 Days Post Treatment (2022-02-21) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	31
12.20VMC Reading 113 Days Post Treatment (2022-02-28) $\ldots \ldots $	132
12.21VMC Reading 116 Days Post Treatment (2022-03-03) $\ldots \ldots $	33
12.22VMC Reading 123 Days Post Treatment (2022-03-10) $\dots \dots \dots$	34
12.23VMC Reading 130 Days Post Treatment (2022-03-17) $\dots \dots \dots$	135
12.24VMC Reading 137 Days Post Treatment (2022-03-24) $\ldots \ldots $	136
12.25VMC Reading 144 Days Post Treatment (2022-03-31) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	137
12.26VMC Reading 151 Days Post Treatment (2022-04-06) $\dots \dots \dots$	138
12.27VMC Reading 159 Days Post Treatment (2022-04-14) $\ldots \ldots $	139
12.28VMC Reading 163 Days Post Treatment (2022-04-18) $\ldots \ldots $	41
12.29VMC Reading 165 Days Post Treatment (2022-04-20) $\ldots \ldots $	42
12.30VMC Reading 169 Days Post Treatment (2022-04-24) $\ldots \ldots $	43
12.31VMC Reading 173 Days Post Treatment (2022-04-28) $\ldots \ldots $	44
12.32VMC Reading 180 Days Post Treatment (2022-05-05) $\dots \dots \dots$	46
12.33VMC Reading 185 Days Post Treatment (2022-05-10) $\ldots \ldots $	47
12.34VMC Reading 187 Days Post Treatment (2022-05-12) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	48
12.35VMC Reading 191 Days Post Treatment (2022-05-16) $\dots \dots \dots$	150
12.36VMC Reading 194 Days Post Treatment (2022-05-19) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	51
12.37VMC Reading 200 Days Post Treatment (2022-05-25) $\dots \dots \dots$	152
13 Dollar Spot Infection Centres - DSIC 1	54
	.60
14.1 DSIC Reading 106 Days post first Treatment (2023-02-21)	
14.2 DSIC Reading 116 Days post first Treatment (2023-03-03)	
14.3 DSIC Reading 130 Days post first Treatment (2023-03-17)	
14.4 DSIC Reading 137 Days post first Treatment (2023-03-24) $\ldots \ldots \ldots$	65

14.5 D	SIC Reading	144 Da	ys post	first	Treatment	(2023-03-	-31)	 	 	 	 		166
14.6 D	SIC Reading	151 Da	ys post	first	Treatment	(2023-04-	-06)	 	 	 	 		167
14.7 D	SIC Reading	159 Da	ys post	first	Treatment	(2023-04-	-14)	 	 	 	 		168
14.8 D	SIC Reading	165 Da	ys post	first	Treatment	(2023-04-	-20)	 	 	 	 		169
14.9 D	SIC Reading	173 Da	ys post	first	Treatment	(2023-04-	-28)	 	 	 	 		170
14.10D	SIC Reading	180 Da	ys post	first	Treatment	(2023-05-	-05)	 	 	 	 		171
14.11D	SIC Reading	187 Da	ys post	first	Treatment	(2023-05-	-12)	 	 	 	 		172
14.12D	SIC Reading	200 Da	ys post	first	Treatment	(2023-05-	-25)	 	 	 	 		173

15 References

174

List of Tables

Table showing Treatments and Rates for product applications vs untreated control	20
Table showing Treatments and Block layout for product applications vs Control -No Treatment	20
Statistics by Treatment	26
Analysis of Variance Model	31
Analysis of Variance Table	31
Significance of Results by Treatment, Block and Days after Initial Treatment	34
Analysis of Variance Model	35
Analysis of Variance Model Day 3	36
Analysis of Variance Model Day 11	37
Analysis of Variance Model Day 17	39
Analysis of Variance Model Day 24	40
Analysis of Variance Model Day 29	41
Analysis of Variance Model Day 32	42
Analysis of Variance Model Day 39	43
Analysis of Variance Model Day 46	44
Analysis of Variance Model Day 53	45
Analysis of Variance Model Day 67	46
Analysis of Variance Model Day 91	47
Analysis of Variance Model Day 106	49
Analysis of Variance Model Day 116	50
Analysis of Variance Model Day 123	51
Analysis of Variance Model 130 Days post Treatment	52
Analysis of Variance Model 137 Days post Treatment	53
Analysis of Variance Model 144 Days post Treatment	54
	Table showing Treatments and Block layout for product applications vs Control -No TreatmentStatistics by TreatmentAnalysis of Variance ModelAnalysis of Variance TableSignificance of Results by Treatment, Block and Days after Initial TreatmentAnalysis of Variance ModelAnalysis of Variance Model Day 3Analysis of Variance Model Day 11Analysis of Variance Model Day 17Analysis of Variance Model Day 24Analysis of Variance Model Day 29Analysis of Variance Model Day 32Analysis of Variance Model Day 39Analysis of Variance Model Day 46Analysis of Variance Model Day 53Analysis of Variance Model Day 67Analysis of Variance Model Day 11

26	Analysis of Variance Model 151 Days post Treatment	55
27	Analysis of Variance Model 159 Days post Treatment	56
28	Analysis of Variance Model 165 Days post Treatment	57
29	Analysis of Variance Model 173 Days post Treatment	58
30	Analysis of Variance Model 180 Days post Treatment	59
31	Analysis of Variance Model 173 Days post Treatment	61
32	Analysis of Variance Model 194 Days post Treatment	63
33	Analysis of Variance Model 200 Days post Treatment	64
34	Statistics by Treatment	65
36	Analysis of Variance Model	70
37	Analysis of Variance Table	70
38	Significance of Results by Treatment, Block and Days after Initial Treatment $\ldots \ldots \ldots$	73
39	Analysis of Variance Model	74
40	Analysis of Variance Model Day 3	75
41	Analysis of Variance Model Day 11	76
42	Analysis of Variance Model Day 17	77
43	Analysis of Variance Model Day 24	78
44	Analysis of Variance Model Day 29	79
45	Analysis of Variance Model Day 32	81
46	Analysis of Variance Model Day 39	82
47	Analysis of Variance Model Day 46	83
48	Analysis of Variance Model Day 53	84
49	Analysis of Variance Model Day 67	85
50	Analysis of Variance Model Day 91	87
51	Analysis of Variance Model Day 106	88
52	Analysis of Variance Model Day 116	89
53	Analysis of Variance Model Day 123	90
54	Analysis of Variance Model 130 Days post Treatment	91
55	Analysis of Variance Model 137 Days post Treatment	92
56	Analysis of Variance Model 144 Days post Treatment	93
57	Analysis of Variance Model 151 Days post Treatment	94
58	Analysis of Variance Model 159 Days post Treatment	95
59	Analysis of Variance Model 165 Days post Treatment	96
60	Analysis of Variance Model 173 Days post Treatment	97
61	Analysis of Variance Model 180 Days post Treatment	98
62	Analysis of Variance Model 187 Days post Treatment	99

63	Analysis of Variance Model 194 Days post Treatment
64	Analysis of Variance Model 200 Days post Treatment
65	Volumetric Moisture Content $\%$ by Treatment
66	Analysis of Variance Model
67	Analysis of Variance Table
68	Significance of Results by Treatment, Block and Days after Initial Treatment 109
69	Analysis of Variance Model Pre Treatment
70	Analysis of Variance Model 3 Days post Treatment
71	Analysis of Variance Model 7 Days post Treatment
72	Analysis of Variance Model 11 Days post Treatment
73	Analysis of Variance Model 15 Days post Treatment
74	Analysis of Variance Model Pre Treatment
75	Analysis of Variance Model 17 Days post Treatment
76	Analysis of Variance Model 22 Days post Treatment
77	Analysis of Variance Model 24 Days post Treatment
78	Analysis of Variance Model 29 Days post Treatment
79	Analysis of Variance Model 32 Days post Treatment
80	Analysis of Variance Model 39 Days post Treatment
81	Analysis of Variance Model 46 Days post Treatment
82	Analysis of Variance Model 67 Days post Treatment
83	Analysis of Variance Model 91 Days post Treatment
84	Analysis of Variance Model 95 Days post Treatment
85	Analysis of Variance Model 105 Days post Treatment
86	Analysis of Variance Model 106 Days post Treatment
87	Analysis of Variance Model 113 Days post Treatment
88	Analysis of Variance Model 116 Days post Treatment
89	Analysis of Variance Model 123 Days post Treatment
90	Analysis of Variance Model 130 Days post Treatment
91	Analysis of Variance Model 137 Days post Treatment
92	Analysis of Variance Model 137 Days post Treatment
93	Analysis of Variance Model 151 Days post Treatment
94	Analysis of Variance Model 159 Days post Treatment
95	Analysis of Variance Model 163 Days post Treatment
96	Analysis of Variance Model 165 Days post Treatment
97	Analysis of Variance Model 169 Days post Treatment
98	Analysis of Variance Model 173 Days post Treatment

99	Analysis of Variance Model 180 Days post Treatment
100	Analysis of Variance Model 185 Days post Treatment
101	Analysis of Variance Model 187 Days post Treatment
102	Analysis of Variance Model 191 Days post Treatment
103	Analysis of Variance Model 194 Days post Treatment
104	Analysis of Variance Model 200 Days post Treatment
105	Statistics by Treatment
108	Significance of Results by Treatment
109	Analysis of Variance Model
110	Analysis of Variance Table
111	Significance of Results by Treatment, Block and Days after Initial Treatment 161
112	Analysis of Variance Model
113	Analysis of Variance Model
114	Analysis of Variance Model
115	Analysis of Variance Model
116	Analysis of Variance Model
117	Analysis of Variance Model
118	Analysis of Variance Model
119	Analysis of Variance Model
120	Analysis of Variance Model
121	Analysis of Variance Model
122	Analysis of Variance Model
123	Analysis of Variance Model

List of Figures

1	Bonnie Doon wetting agent Trial site	9
2	Bonnie Doon wetting agent Trial site2	9
3	Tricure 10L	14
4	Hydroforce Ultra 10L liquid	15
5	Propel 10L container	17
6	20L drum Maximizer H2O	18
7	HydroLink Rapid 20L drum	19
8	Light box on trial green	21
9	Trufirm end view showing impact hammer	22
10	Using the Trufirm with the bluetooth ap and an iPhone \ldots	22
11	Side view of LCD screen on Turufirm	22

12	Spectrum TDR 350 with inbuilt GPS and bluetooth	23
13	Plot means for Turf Quality for Treatment and Block	32
14	Trufirm plot means for Treatment and Block	71
15	Volumetric Moisture Content plot means for Treatment and block	107
16	Dollar Spot Infection Centre plot means for Treatment and block	159

Figure 1: Bonnie Doon wetting agent Trial site

Figure 2: Bonnie Doon wetting agent Trial

1 Abstract

Soil wetting agents are commonly used to reduce the irrigation needs of turfgrass during periods of drought. This research aimed to determine the effects of 7 soil surfactants on a well establish creeping bentgrass (Agrostis stolinifera) golf green in Sydney.

A randomised complete block design was established with 7 water retention products plus 1 at half rate and an untreated control. The products tested were Hydroforce Ultra, Tricure, Propel, Maximizer H2O, Hydrolink Rapid, Hydroforce Recovery, and a proprietary formulation containing salicylic acid.

Plots were evaluated for visual turgrass quality, soil volumetric moisture content (VMC), Surface hardness, and dollar spot incidence by counting dollar spot infection centres per plot.

Results were as follows:

- 1. The null hypothesis is that none of these products makes any difference to turf quality, soil volumetric moisture content, surface hardness or soil organic matter.
- 2. Over the duration of the trial only Treatment 5 had a significantly lower quality content than the control (Treatment 6). There was no significant difference between the turf quality of any of the other treatments and the control.
- 3. Treatment 4 had a significantly higher turf quality than Treatment 5.
- 4. Over the 200 day trial period there were only three occasions where there were significant differences in turf quality.
- 5. Treatments 4, 8 and 9 were the only ones with no significant difference in surface hardness compared to the control.
- 6. Significant differences in Trufirm Readings were only apparent 29 days post first treatment.
- 7. Only Treatments 9 and 3 had significantly higher moisture contents than the control. Treatment 9 also had significantly high moisture contents than Treatments 5 and 7.
- 8. Significant differences in moisture content were seen 3, 22, 95, 105, 159, 173, 187 and 200 days post first Treatment. In total 23% of the time significant differences were seen.
- 9. The numbers of infection centres could be divided between those being less than the control and those that showed no difference from the control. Those showing less infection centres than the control comprised Treatments 1, 2, 3, 4 and 5. Those showing no difference than the control comprised Treatments 7, 8 and 9.
- 10. Treatments 3, 4, and 5 all had significantly less dollar spot infection centres than the control.

2 Discussion of Results

These results raised a number of questions relating to the performance and claims of these soil wetting agents.

2.1 Turf Quality

The fact that all of them apart from Treatment 5 did not cause any reduction in turf quality compared to the untreated control contradicts the findings of ... However, it does go to show how the safety of soil wetting agents has improved over the years.

Treatment 4 also contains a significant amount of humic acid and so the good turf quality results and the associated reduction in dollar spot infection centres is not in the least a surprise.

With Treatment 5 the monthly applications leading to a reduction in turf quality is not a true reflection of the product use in a real life situation. It is only supposed to be used for reducing surface soil moisture levels with infrequent applications.

2.2 Volumetric Moisture Content

Significant differences in volumetric moisture content were seen on 3,22,95,105,159,173,187,and 200 days after the first application.

Treatments 3 and 9 both appeared to retain more moisture at a depth of 75mm than the others. This result was a surprise in the case of Treatment 9 due to the very low use rate.

The fact that Treatment 9 held more water but gave a significantly harder surface may well be related to the zone above 75mm depth.

The negative to this is that despite holding more soil moisture Treatment 9 was in the group showing high numbers of dollar spot infection centres.

Treatment 3 in contrast was classified in the low dollar spot infection centre group as a result of the incorporation of salicylic acid and biostimulant package.

2.3 Surface Hardness.

The results that we gained showed significant differences between treatments compared to the control. This confirms the 2015 results of Bauer et al who showed that although firmness measurements were not affected by wetting agent applications in 2014 they were in 2015.

One of the reasons this may have occured is that thatch can have a high affinity for wetting agents, which means that they will tend to dry out much more slowly at the surface (Karnok et al, 2004). Future work proposed in 2023-2024 should help understand this further.

Under the situation of non limiting water Treatments 1 and 2 performed in a pretty similar vein. Both fell into the low dollar spot infection centre group, both showed no reduction in turf quality compared to the control, and both gave no significant differences in surface hardness levels.

Significant differences in surface hardness occurred twice. 29 days post first Treatment, when Treatments 2 and 9 were significantly harder than Treatment 7, and again 67 days post first Treatment when Treatments 3 and 9 were significantly firmer than Treatment 5.

2.4 Dollar Spot Incidence.

This wasn't apaprent until 130 days after the start of the trial. Interestingly the Treatments could be clearly divided into those showing evidence in reducing disease and those that didn't.

Treatments 1,2,3,4, and 5 all fell into the former group. The reason behind this is possibly that with these particular products you don't have so much dew on the bentgrass, meaning that they are less prone to dollar spot.

3 Future Work

As a result of this trial we are intending to extend it into 2023-2024 but with three major modifications to the protocol.

Firstly we will supplement soil moisture readings at 75mm with additional readings at 37mm. This will allow us to get a better idea what is happening in the upper thatch layer and takes into account the findings of Leinauer et al (2007) that the efficacy of wetting agents was most pronounced at depths of 2.5 cm or less.

Secondly we are going to subject the turf to moisture stress. Treatments 1 and 2 both claim to maintain if not improve turf quality after multiple applications under stress conditions.

Thirdly, we will carry out the water drop penetration time (WDPT) test was used to measure the actual water repellency of the field-moist samples at depths of 0-2, 2-4 and 4-6cm. This will give us a better idea of wetting agent longevity in the soil.

4 Background to Treatments

4.1 Tricure (Product 1)

Figure 3: Tricure 10L

TriCure AD® is marketed as an advanced soil surfactant designed to prevent and control hydrophobic soil conditions while maintaining optimum soil-water management. It works by attaching to both soil and organic particles, reducing the surface tension of water, and attracting a thin film of water close to the particle surfaces. This allows the optimum moisture to be held for plant use while facilitating water release and effective drainage.

Trials

The efficacy of wetting agents varied over depth and was most pronounced at depths of 2.5 cm or less.

Was one of the products that most consistently reduced hydrophobicity. Products that consistently did the best job of reducing hydrophobicity also unfortunately had potential (though limited potential) to cause some reduction in turf quality Karcher et al (2009)

All wetting agent products appear to effectively reduce LDS incidence and increase soil moisture uniformity, over a wide range of depths (75- to 200mm) compared to untreated turf. In addition, there is no evidence that these wetting agents significantly increase surface soil moisture during periods of frequent irrigation or rainfall. These results suggest that these commonly used wetting agents can be used to manage LDS without adversely affecting rootzone moisture (Johnson, A and Leeper K. 2011)

In this study, block polymer and modified block polymer wetting agents (TriCure®, Revolution®) increased soil moisture and uniformity distribution by an average of 4.7 and 4.8%, respectively.

A follow up study was conducted in 2011 TriCure®, Revolution®, Immerse® GT, Magnus®, and Performa Gold® treatments increased soil moisture by an average of 4.4%.

Dispatch® decreased soil moisture by 4.7%. TriCure®, Magnus®, and Revolution® increased uniformity by 6.5%.

Baird et al, 2011

Under extreme water stress conditions, Revolution® (Aquatrols) performed the best of all products tested in alleviating turf drought symptoms and LDS incidence. TriCure AD® (Mitchell Products) was next best.

4.2 HydroForce Ultra (Product 2 and Treatment 7 half rate)

Figure 4: Hydroforce Ultra 10L liquid

This is sold as HydroForce Ultra in Australia, Excalibur in the US and Evolve in the UK. It is composed of 90% Polyalkylene glycols and 10% inert ingredients.

HydroForce Ultra is a new chemistry, with a unique molecular design, developed in partnership with one of the leading manufacturers of block co-polymer technology in the United States. The new molecular design, comprises of a block co-polymer with a modified structure to provide unique performance characteristics.

HydroForce Ultra is manufactured in the United States to the strictest standards. The product comes available in a 10L pack size and has been developed and is supported by Dr Stan Kostka, Dr Mike Fidanza and Dr Cale Bigalow from Rhizosolutions LLC.

4.3 Gilba SA (Product 3)

Bially et al in 2005 concluded that there is a huge variation in wetting efficacy among surfactant chemistries. Their conclusions were that an enhanced wetting rate occurred when the alkyl glucoside to block copolymer ratio was from approximately 6:1 to 0.5:1 by weight, ideally when the ratio was from approximately 4:1 to 0.7:1.

Gilba SA comprises an alkyl glucoside to block copolymer ratio of 4:1 whilst also containing a high loading of salicylic acid (SA) plus root stimulants.

4.4 Salicylic acid

Salicylic acid (SA) is a phenolic phytohormone and is found in plants with roles in plant growth and development, photosynthesis, transpiration, ion uptake and transport. It is involved in endogenous signaling against both biotic and abiotic stress, being an important plant hormone that regulates many aspects of plant growth and development.

Salicylic acid or orthohydroxy benzoic acid is ubiquitously distributed plant growth regulator (Raskin, 1992) and has positive effects on plant growth and developmental processes (Senaratna et al, 2000).

Research has shown its roles in:

- Seed germination and fruit yield (Klessig and Malamy 1994).
- Photosynthetic rate, and in transpiration (Khan et al, 2003).
- Reducing oxidative stress (Shirasu et al,1997).
- Plant-water relations in abiotic stress affected plants were regulated by SA (Miura and Tada, 2014).
- Increased heat tolerance (Larkindale, 2002).
- Stress resistance in biotic stressed plants have also been reported (Kumar, 2014).

SA is an effective SAR inducer, but it can be highly phytotoxic (Conrath et al, 2015). Using high rates will directly induce the activation of plant defences. However, if the rates are too low they elicit little to no response. Following subsequent infection, however, defences are activated more rapidly and/or strongly (Conrath et al, 2006).

Wang et al (2010) looked at treating the leaves of young grapevines before heat stress (25°C), during heat stress (43°C for 5 h), and through the following recovery period (25°C). SA treated leaves showed an increased rate of recovery compared to the control (H2O-treated) leaves

Comparative work looking at the efficacy of salicylic acid and Acibenzolar-S-methyl (ASM) was carried out into Alternaria solani, which is a destructive pathogen to tomato crops (Aslam et al, 2019).

Foliar and seedling root dipping application of Bion and salicylic acid not only reduced the disease severity but also enhanced the plant growth.

4.5 Disease fighting properties

Hsiang et al (2022) looked at using 0.69-0.7g/100ml Aspirin (acetylsalicylic acid) in growth room tests and found little effectiveness. The product we are researching contains a significantly higher rate of salicylic acid than this.

Rahman et al (2013) found that innoculating perennial ryegrass with salicylic acid prior to innoculation with grey leaf spot (Magnaporthe oryzae) gave significant disease reductions.

4.6 Turf specific research

- Creeping Bentgrass (Agrostis stolonifera) subjected to heat has been shown to exhibit elevated SA levels after an hour (Larkindale and Huang 2005).
- Shahgholi et al, 2013 looked at the interaction between Trinexapac ethyl and salicylic acid on perennial ryegrass. Applying 0.27 g of salicylic acid gave a significant height response. Also salicylic acid with concentrations of 0.27 and 0.54 g/ m2 increased colour quality and chlorophyll content.
- He et al 2005 looked at various rates of SA on the heat tolerance of Kentucky bluegrass exposed to 46°C for 72 h in a growth chamber. 0.25 mmol SA gave the best heat tolerance and subsequent recovery.
- Hosseini, Kafi and Arghavani (2016) looked at perennial grass (Lolium perenne cv. 'Numan') under drought stress. Foliar applications of SA increased the chlorophyll content and reduced electrolyte leakage, proline accumulation and antioxidant enzyme activity, which suggested that salicylic acid can be used to reduce the negative impacts of drought stress.

4.7 Previous Research

Our 2020 work showed that salicylic acid applied to creeping bentgrass lead to increased root growth and lateral root branching, better turf quality and faster and more consistent seed germination.

By incorporating this into the wetting agent formulation, the idea is to increase the ability of turf to better abiotic stress and drought whilst also maintaining a strong and vigorous root architecture.

4.8 Propel (Product 4)

Figure 5: Propel 10L container

Propel is based on Di-Sulfosuccinate Surfactant chemistry.

4.9 Hydroforce Recovery (Product 5)

HydroForce Recovery is a premium soil surfactant blend, specifically designed to overcome hydrophobic soil situations. HydroForce Recovery's key performance characteristics are due to it's unique combination of powerful, highest quality surfactant technologies fulfilling rapid soil wetting, reliable re-wetting and plant health improvement performance. This is an 80% Proprietary Blend of Non-Ionic Surfactants and 10% L form Amino Acids & Root promotants.

4.10 H2O Maximizer (Product 8)

Figure 6: 20L drum Maximizer H2O

This is a soil surfactant and polymer resin blend that can be tank mixed for spray application or injected directly into irrigation lines.

The product claims to initially wet soil while the polymer resin adsorbs to soil particles for enhanced water retention.

Due to the surfactant reducing the surface tension combined with the polymer resin's attachment to soil particles it has a dual activity.

4.11 Hydrolink Rapid (Product 9)

This is designed to re-wet and penetrate through hydrophobic or compacted soils and thatch layers.

It contains two unique active ingredients, one compact surface acting anionic surfactant designed to penetrate even the most hydrophobic soils, and a heavier-weighted reverse block co-polymer for residual re-wetting performance.

Figure 7: HydroLink Rapid 20L drum

5 Trial Overview

The practice putting green at Bonnie Doon G.C in Sydney, NSW was chosen to carry out this trial. The surface was composed of 85% creeping bentgrass (agrostis stolonifera var A1/A4)

a) A randomised block trial was marked out after using Edgar II for its design and layout. This comprised 54 plots, each having a surface area of 1m2 with a 50mm buffer around each.

The randomized block trial initially comprised 9 treatments with 6 replicates. One treatment was an untreated control. These were initially treated on Monday 7th November 2022 with further applications being made on 7th December 2022, 6th February 2023, 3rd March 2023, 3rd April 2023, and the final application being made on 1st May.

All treatments were applied in the label rate amount of water and then immediately washed in using the in ground irrigation system present at the site. This applied approximately 6mm of water.

The trial plots were not fed or treated for disease over the trial duration. Irrigation was also applied as and when required with soil moisture levels being recorded to a depth of 75mm.

Treatment	Rate Product $g(ml)/1m2$	Rate Product Kg (L)/Ha	water volume L/Ha
Tricure (1)	1.2	12	800
Hydroforce Ultra (2)	1.25	12.5	800
Gilba SA (3)	1.25	12.5	800
Propel (4)	1	10	800
HydroForce Recovery (5)	2	20	800
Untreated control (6)	-	-	800
Hydroforce Ultra (7)	0.625	6.25	800
H2O Maximizer (8)	3	30	800
Hydrolink Rapid (9)	0.5	5	800

 Table 1: Table showing Treatments and Rates for product applications vs untreated control

Assessments were as follows: 1. Turf Quality. Was this effected by the Treatment? 2. Surface Hardness 3. Soil Volumetric Moisture Capacity (VMC%).4 Dollar spot incidence.

Table 2: Table showing Treatments and Block layout for productapplications vs Control -No Treatment

Block 1	Block 2	Block 3	Block 4	Block 5	Dlasle 6
DIOCK 1	DIOCK Z	DIOCK 3	DIOCK 4	DIOCK 9	Block 6
Hydrolink	Hydroforce	Hydroforce	Hydrolink	Gilba SA	Control
Rapid	Ultra full	Recovery	Rapid		
Hydroforce	H20 Maximizer	Hydroforce	Hydroforce	Hydroforce	Gilba SA
Ultra half rate		Ultra full	Ultra full	Ultra full	
Hydroforce	Tricure	Control	H20 Maximizer	H20 Maximizer	Propel
Recovery					
Hydroforce	Hydroforce	Gilba SA	Hydroforce	Hydroforce	H20 Maximizer
Ultra full	Recovery		Recovery	Ultra half rate	
Control	Hydroforce	Hydroforce	Gilba SA	Control	Hydroforce
	Ultra full	Ultra half rate			Recovery
Gilba SA	Gilba SA	H20 Maximizer	Control	Hydrolink	Hydroforce
				Rapid	Ultra Half rate

Block 1	Block 2	Block 3	Block 4	Block 5	Block 6
Tricure	Control	Tricure	Hydroforce Ultra half rate	Propel	Tricure
Propel	Hydroforce Ultra half rate	Hydrolink Rapid	Gilba SA	Tricure	Hydrolink Rapid
H20 Maximizer	Hydrolink Rapid	Propel	Tricure	Hydroforce Recovery	Hydroforce Ultra full

5.1 Turf Quality.

Turf Quality Analysis was carried out using a light box and then analyzed using Turf analyzer software. Images were taken with a Panasonic DMC-TZ80.

Figure 8: Light box on trial green

5.2 Surface Hardness

Surface hardness was measured with a Trufirm Turf Firmness Meter (Spectrum Technologies). This has an impact hammer that mimics the shape of a golf ball in order to simulate golf ball impacts. The mass is dropped from a consistent height and the maximum turf penetration value is recorded and correlated to the surface firmness. The lower the reading, the firmer the turf. It measures impact of falling mass in 1000th of an inch readings.

A reading of 500, means you create a depression of 1/2", if the reading is 250 the depth is 1/4".

A TruFirm reading of 0.4 is the target after rainfall or heavy leaching (40 - 60 minute irrigation cycle). Pat Gross of the USGA also feels that a TruFirm reading 0.4 is a good firmness reading for routine golf play – low for tournament conditions but after rainfall might be acceptable.

Research has demonstrated an inverse relationship between volumetric water content (VWC) and firmness (Moeller et al., 2007; Linde et al., 2011), and because of this, wetting agents have the potential to influence surface firmness by creating drier surfaces under moist soil conditions.

Figure 9: Trufirm end view showing impact hammer

Figure 10: Using the Trufirm with the bluetooth ap and an iPhone

Figure 11: Side view of LCD screen on Turufirm

5.3 Soil Volumetric Moisture Capacity (VMC%)

Soil volumetric moisture content (VMC %) was recorded using a TDR 350 (Spectrum Technologies) fitted with 75mmm (3 inch) times.

Time domain reflectometry (TDR) indirectly measures the soil water content based on the travel time of a high frequency electromagnetic pulse through the soil; this travel time is used to calculate the permittivity (dielectric constant) of the material.

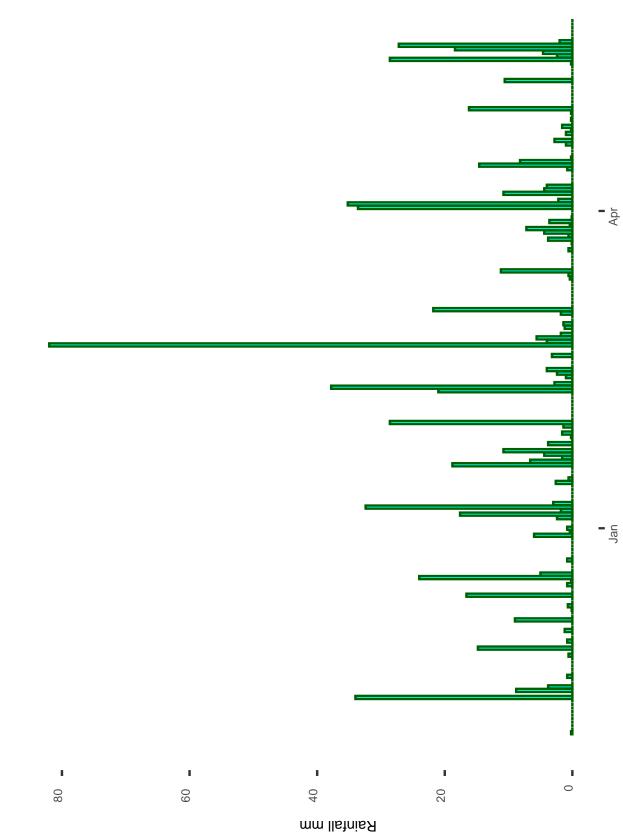
The TDR probes are inserted directly into the soil at the desired soil depth.

Figure 12: Spectrum TDR 350 with inbuilt GPS and bluetooth

5.4 Dollar Spot Infection Centres

After 106 days dollar spot became apparent. Thanks to Craig Geeves Assistant Superintenedent for carrying out a visual count of the infection centres on the plots.

6 Results


Plots were analyzed using digital image analysis in combination with Image J. Images were taken regularly with a Lumix . Image analysis was then carried out using Turf Analyzer software (https://turfanalyzer.com).

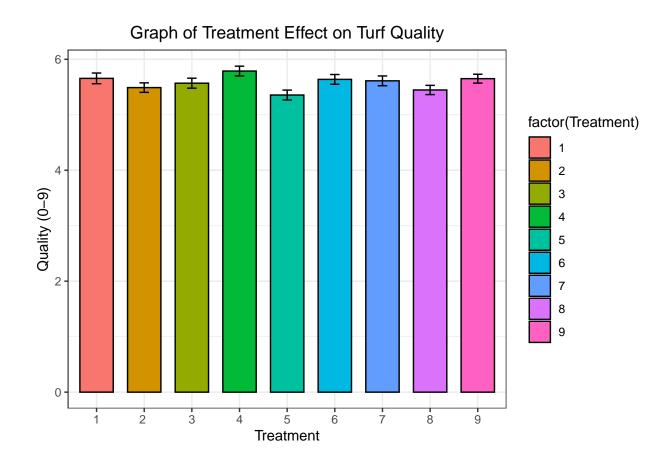
Statistical analysis was carried out using RStudio. All data was subjected to a one-way ANOVA (analysis of variance) to determine the effects of the Treatment on Soil moisture content (VMC), Surface hardness (Trufirm), Turf Quality and number of dollar spot infection centres (DSIC). Data were subjected to an analysis of variance (ANOVA) using RStudio. Significant results were then subjected to post hoc testing with mean values being separated using Duncan's multiple range test (DMRT) at the 0.05 probability level.

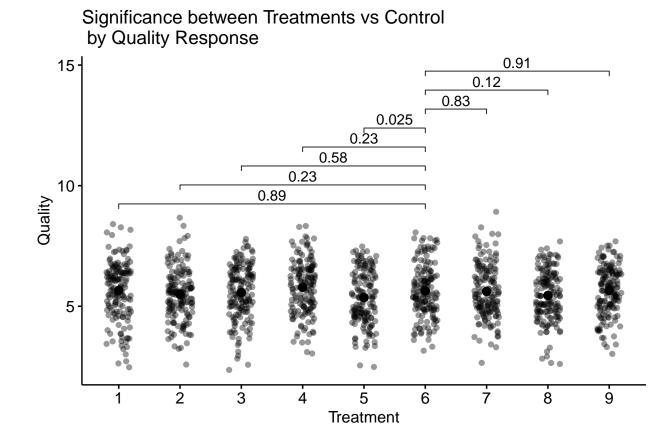
Weather

 $\mathbf{7}$

8 Turf Quality on a Scale of 1-9

An overview of the data recorded is shown below

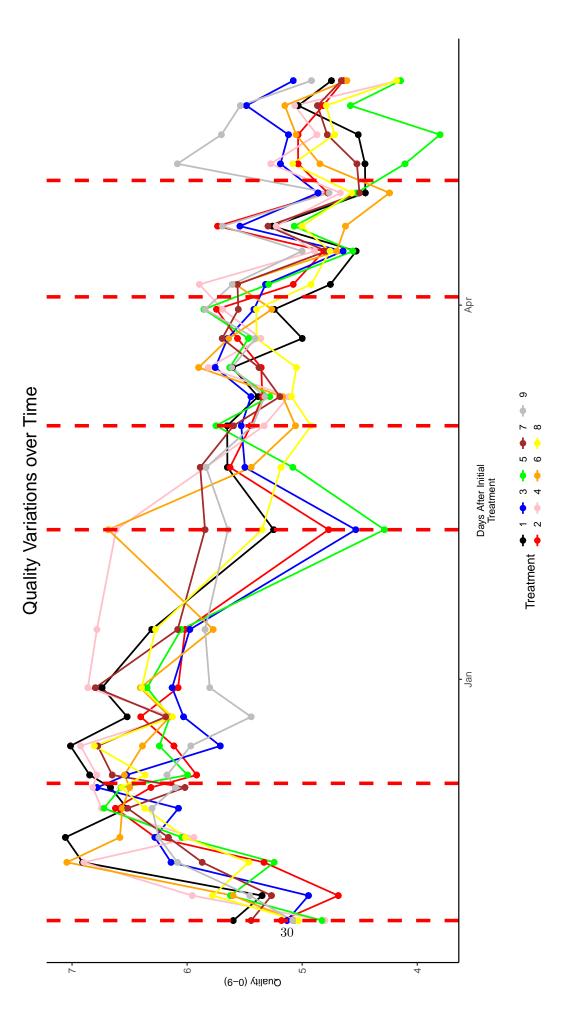

Treatment	n	Quality	sd	se	ci
1	156	5.656	1.204	0.09643	0.1905
2	156	5.49	1.07	0.08564	0.1692
3	156	5.569	1.121	0.08978	0.1773
4	156	5.788	1.102	0.08825	0.1743
5	156	5.356	1.114	0.08917	0.1761
6	156	5.638	1.099	0.08795	0.1737
7	156	5.612	1.101	0.08817	0.1742
8	156	5.447	1.04	0.08326	0.1645
9	156	5.651	0.9985	0.07995	0.1579


Table 3: Statistics by Treatment

The following table summarises this

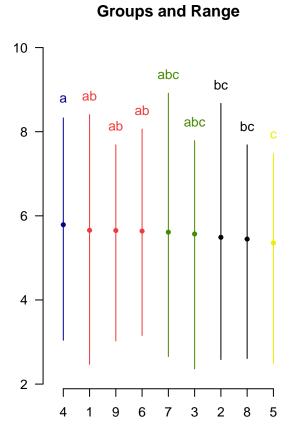
Treatment	Quality
1	5.656
2	5.49
3	5.569
4	5.788
5	5.356
6	5.638
7	5.612
8	5.447
9	5.651

This shows that the Treatment 4 gave the highest quality reading and Treatment 5 the lowest. However the only significant differences compared to the untreated control was Treatment 5 which exhibited significantly lower turf quality. There was no significant differences between any of the other Treatments.

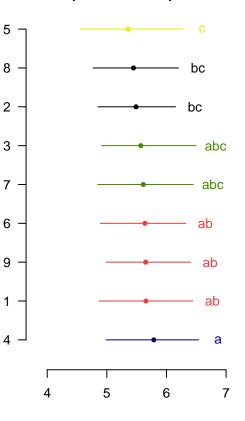


Comparative variations in Quality over Time

Over time there was a decline in turf quality from long term usage of Treatment 5. This decline was mirrored by the other Treatments but was noticeably less over the same time period.

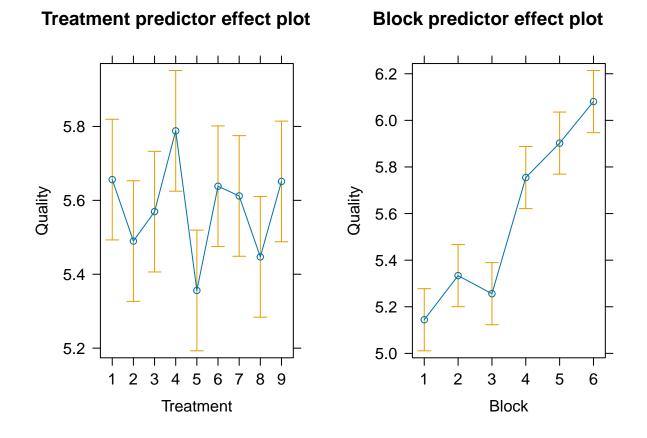

Analysis showed that the Treatment has a significant effect in relation to turf quality.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
factor(Treatment)	8	21	2.625	2.186	0.02606
Residuals	1395	1675	1.201	NA	NA


Table 5: Analysis of Variance Model

	Df	$\operatorname{Sum}\operatorname{Sq}$	Mean Sq	F value	$\Pr(>F)$
Block	5	173.2	34.64	41.29	1.076e-39
Treatment	8	21	2.625	3.128	0.001644
Date	1	307.9	307.9	367	9.932e-73
Treatment:Date	8	35.22	4.402	5.247	1.722e-06
Residuals	1381	1159	0.839	NA	NA

 Table 6: Analysis of Variance Table



	, -	- 2	е Г	4	- 5	9	2	80 	စ ၂	– Average	_
6 –	6.2	6.4	5.8	6.3	6.2	5.3	6.5	5.6	6.5	6.1	
5 –	6.2	5.9	6.3	5.4	5.8	6.4	5.9	5.4	5.8	5.9	6.5
4 –	5.4	5.8	6	6	5.5	5.9	6.1	5.5	5.6	5.8	6.0
3 –	5	5	4.6	5.8	4.7	5.3	5.1	5.7	6.2	5.3	5.5
2 –	5.5	5.4	5.8	5.2	4.9	5.6	5.3	5.2	5.2	5.3	5.0
1 —	5.6	4.5	5	6.1	5.1	5.3	4.7	5.4	4.6	5.1	
Average –	5.7	5.5	5.6	5.8	5.4	5.6	5.6	5.4	5.7	5.6	4.5

Figure 13: Plot means for Turf Quality for Treatment and Block

9 Block Effect with Treatment on Turf Quality

There was a significant Block effect across the trial site with Blocks with this being most evident in Blocks 4, 5 and 6. There was no Treatment:Block interaction.

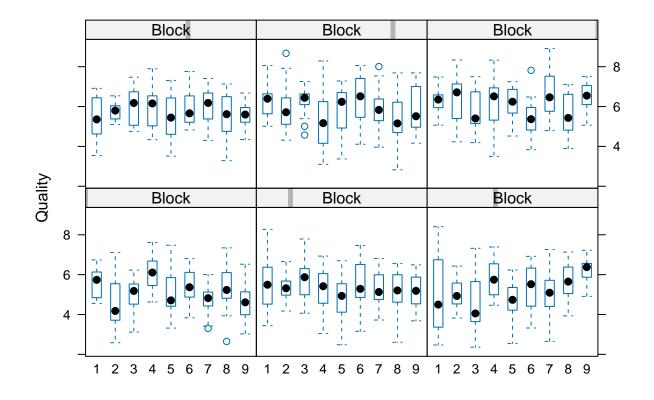
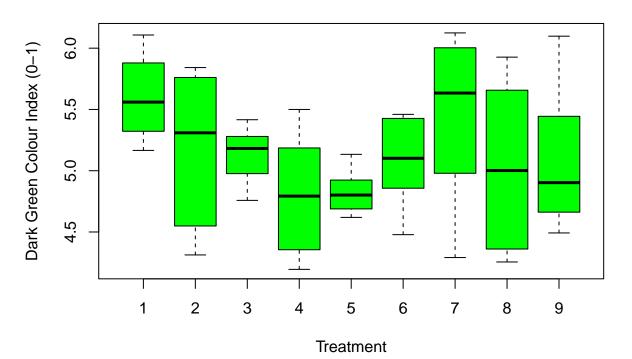
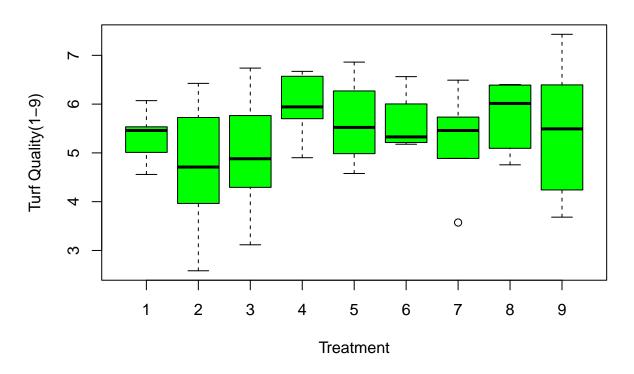



Table 7: Significance of Results by Treatment, Block and Days after Initial Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Block	1	158.5	158.5	221.4	5.414e-46
Treatment	8	21	2.625	3.667	0.0003108
DAT	25	518.6	20.74	28.98	3.304e-104
Treatment:DAT	200	161.3	0.8063	1.127	0.1268
Residuals	1169	836.6	0.7157	NA	NA

9.1 Turf Quality at Trial start and 3 days following the First Treatment (2022-11-07)

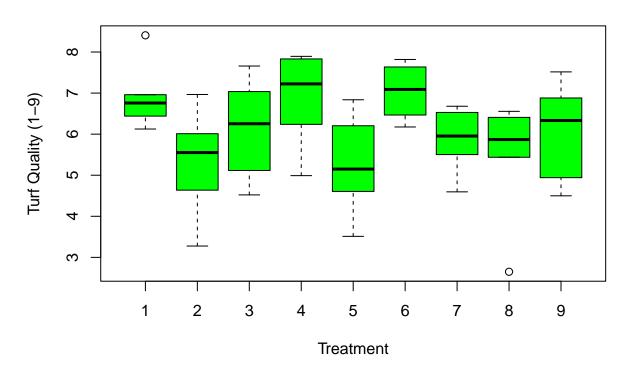


Turf Quality Pre First Treatment

In the resulting ANOVA table, the F-tests show that there is no significant difference in Treatment factor levels.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	3.205	0.4006	1.489	0.188
Residuals	45	12.11	0.269	NA	NA

9.2 Quality 3 Days post First Treatment (2022-11-10)

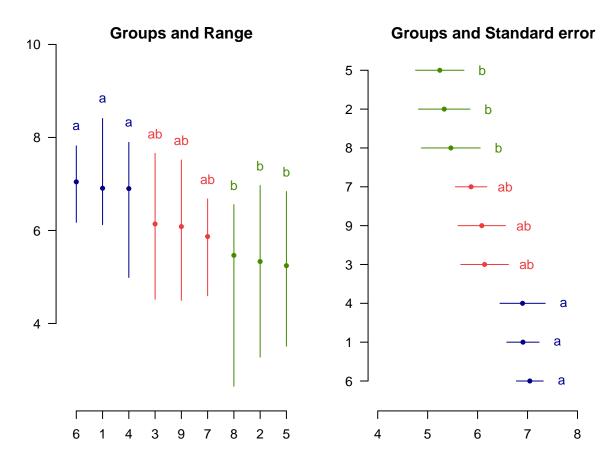


Turf Quality 3 Days Post First Treatment

In the resulting ANOVA table, the F-tests show that there is no significant difference in Treatment factor levels.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7.681	0.9602	1.009	0.4426
Residuals	45	42.81	0.9512	NA	NA

Table 9: Analysis of Variance Model Day 3



Turf Quality 11 Days Post First Treatment

Table 10: Analysis of Variance Model Day 11

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	23.82	2.977	2.509	0.02401
Residuals	45	53.4	1.187	NA	NA

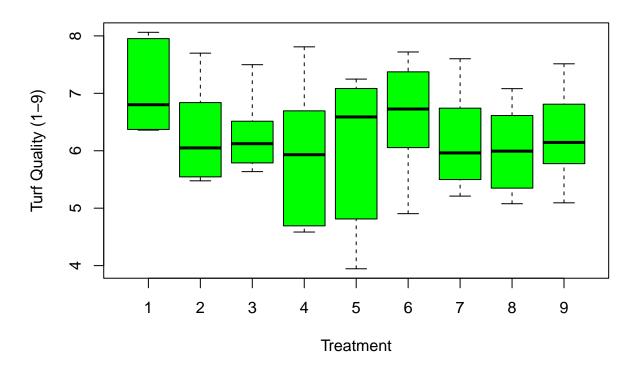
In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

ab

T

7

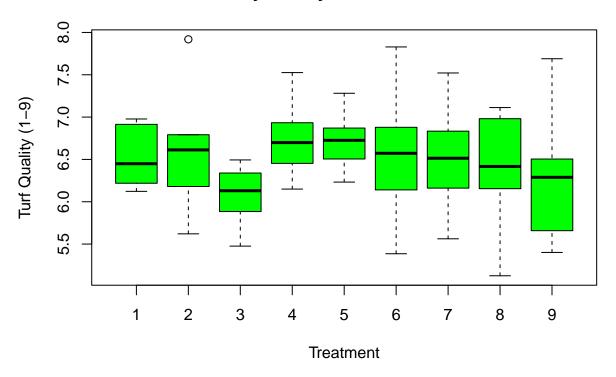
а


а

а

٦

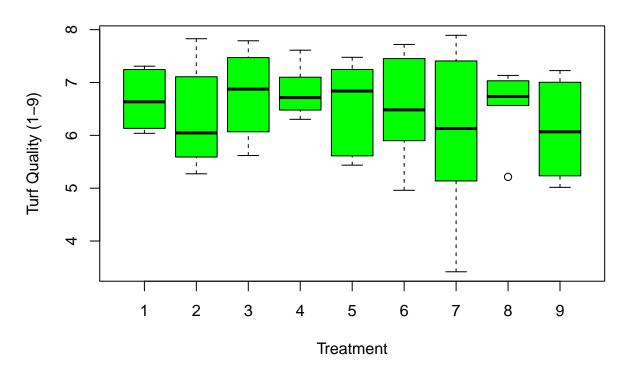
8


9.4 Quality 17 Days post First Treatment (2022-11-24)

Turf Quality 17 Days Post First Treatment

Table 11: Analysis of Variance Model Day 17

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5.707	0.7134	0.7615	0.6378
Residuals	45	42.16	0.9368	NA	NA



Turf Quality 24 Days Post First Treatment

Table 12: Analysis of Variance Model Day 24

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	2.185	0.2731	0.7133	0.6785
Residuals	45	17.23	0.3829	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

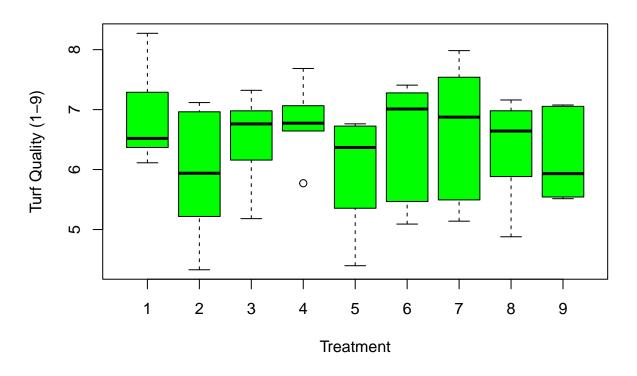
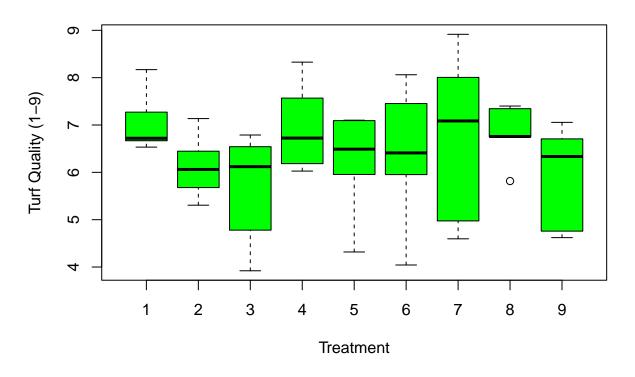

Turf Quality 29 Days Post First Treatment

Table 13: Analysis of Variance Model Day 29

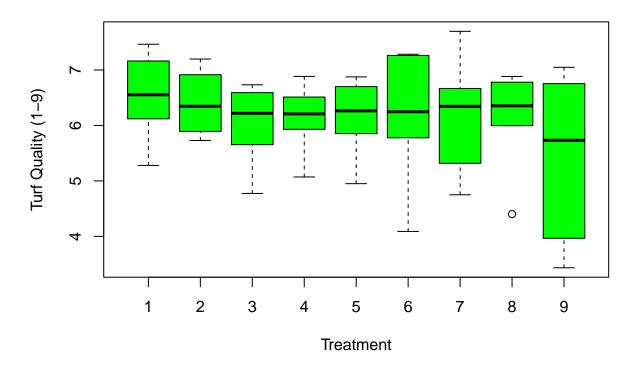
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	3.849	0.4811	0.5229	0.8329
Residuals	45	41.4	0.9201	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.


9.7 Quality 32 Days post First Treatment (2022-12-09)

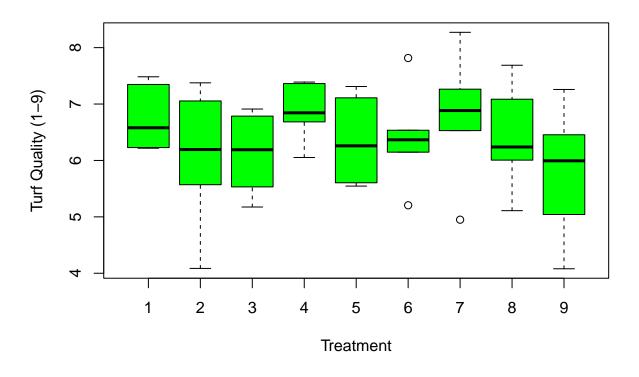
Turf Quality 32 Days Post First Treatment

Table 14: Analysis of Variance Model Day 32


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5.35	0.6687	0.8295	0.5814
Residuals	45	36.28	0.8062	NA	NA

Turf Quality 39 Days Post First Treatment

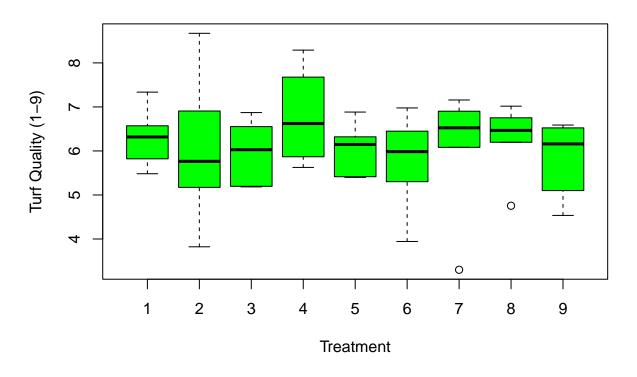
Table 15: Analysis of Variance Model Day 39


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	10.27	1.284	1.135	0.3591
Residuals	45	50.91	1.131	NA	NA

Turf Quality 46 Days Post First Treatment

Table 16: Analysis of Variance Model Day 46

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	4.273	0.5341	0.6063	0.7676
Residuals	45	39.64	0.8809	NA	NA



Turf Quality 53 Days Post First Treatment

Table 17: Analysis of Variance Model Day 53

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6.125	0.7657	0.9598	0.4789
Residuals	45	35.9	0.7978	NA	NA

9.11 Quality 67 Days post First Treatment (2023-01-13)

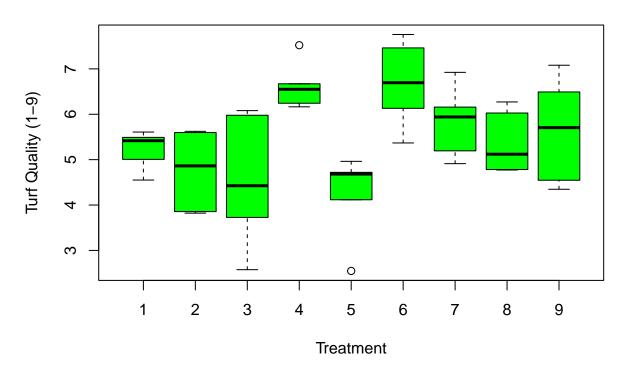
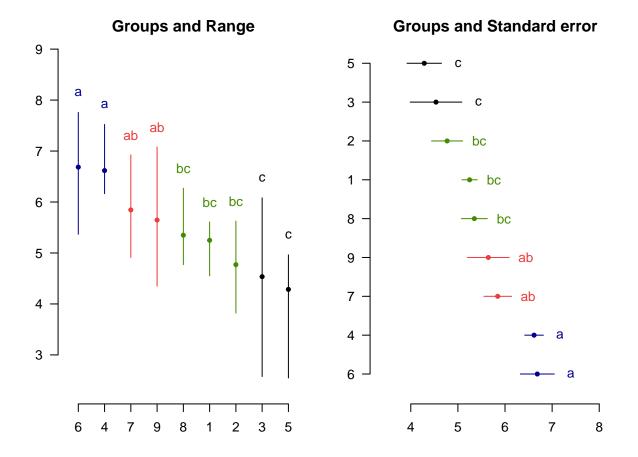
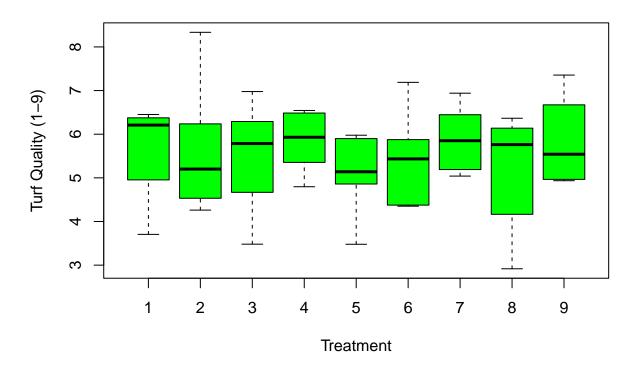

Turf Quality 67 Days Post First Treatment

Table 18: Analysis of Variance Model Day 67

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	4.403	0.5503	0.512	0.841
Residuals	45	48.36	1.075	NA	NA

9.12 Quality 91 Days post First Treatment (2023-02-06)

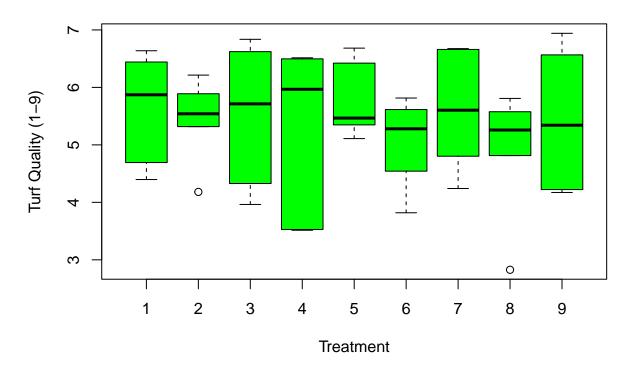

This data was recorded after a two month gap in applications and prior to reapplication on the same day.



Turf Quality 91 Days Post First Treatment

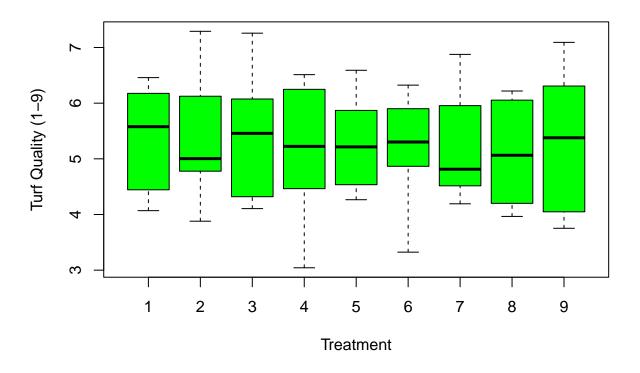
Table 19: Analysis of Variance Model Day 91

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment Residuals	$8\\45$	$34.71 \\ 32.97$	$4.339 \\ 0.7327$	5.922 NA	3.5e-05 NA



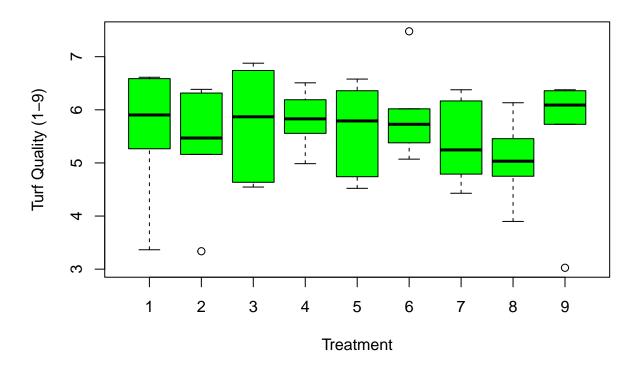
Turf Quality 106 Days Post First Treatment

Table 20: Analysis of Variance Model Day 106


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	3.961	0.4951	0.4065	0.9109
Residuals	45	54.8	1.218	NA	NA

Turf Quality 116 Days Post First Treatment

Table 21: Analysis of Variance Model Day 116


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	3.547	0.4433	0.4177	0.9043
Residuals	45	47.76	1.061	NA	NA

Turf Quality 123 Days Post First Treatment

Table 22: Analysis of Variance Model Day 123

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	0.7308	0.09135	0.07527	0.9997
Residuals	45	54.62	1.214	NA	NA

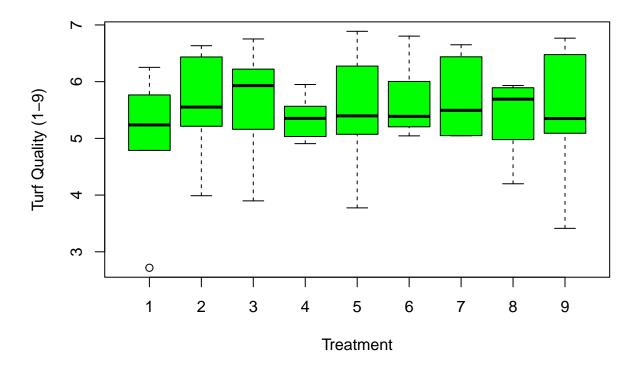
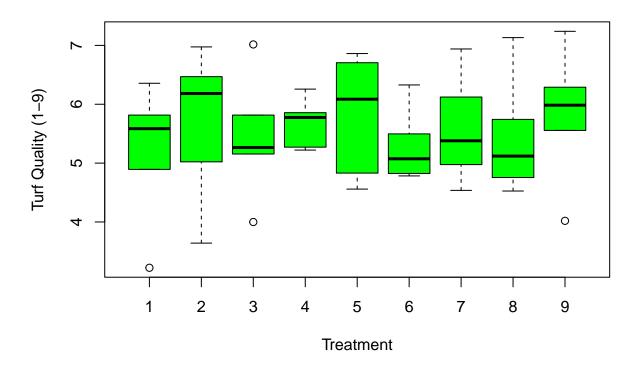

Turf Quality 130 Days post Treatment

Table 23: Analysis of Variance Model 130 Days post Treatment

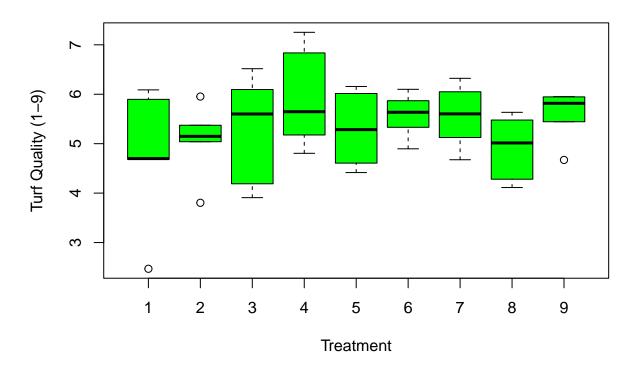
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	3.388	0.4234	0.4574	0.8792
Residuals	45	41.66	0.9258	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.


9.17 Turf Quality Reading 137 Days Post Treatment (2022-03-24)

Turf Quality 137 Days post Treatment

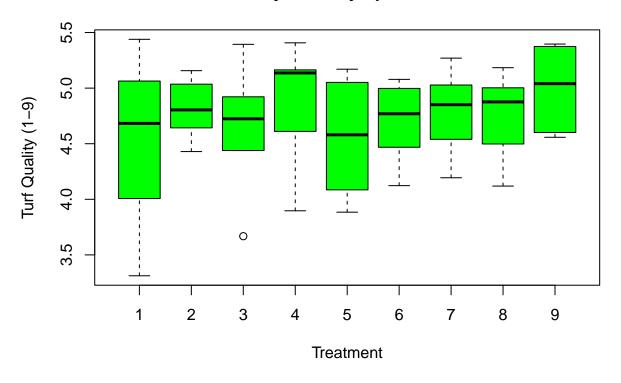
Table 24: Analysis of Variance Model 137 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	2.171	0.2713	0.3231	0.953
Residuals	45	37.79	0.8397	NA	NA

Turf Quality 144 Days post Treatment

Table 25: Analysis of Variance Model 144 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	2.725	0.3406	0.3877	0.9215
Residuals	45	39.53	0.8785	NA	NA

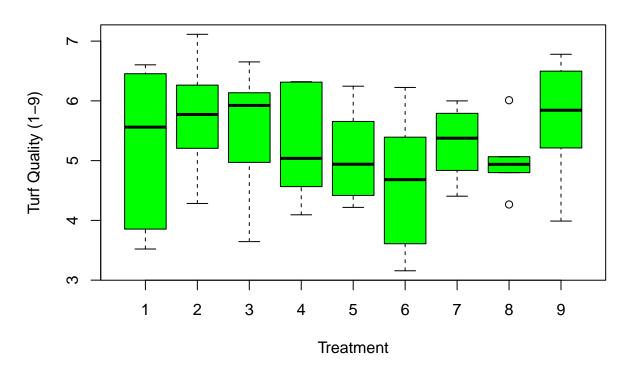


Turf Quality 151 Days post Treatment

Table 26: Analysis of Variance Model 151 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6.43	0.8038	1.183	0.3302
Residuals	45	30.56	0.6792	NA	NA

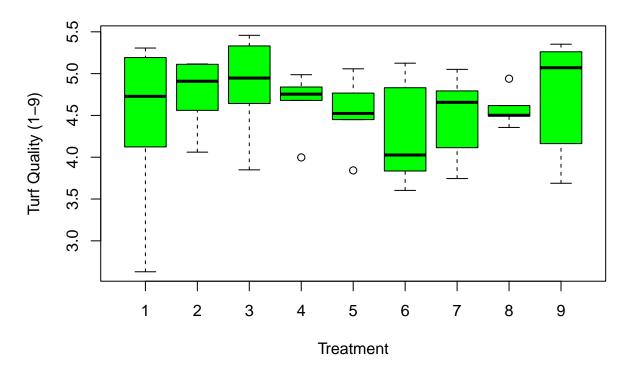
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Turf Quality 159 Days post Treatment

Table 27: Analysis of Variance Model 159 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	1.119	0.1398	0.5811	0.7879
Residuals	45	10.83	0.2407	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Turf Quality 165 Days post Treatment

Table 28: Analysis of Variance Model 165 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6.008	0.751	0.7862	0.6172
Residuals	45	42.98	0.9552	NA	NA

Turf Quality 173 Days post Treatment

Table 29: Analysis of Variance Model 173 Days post Treatment

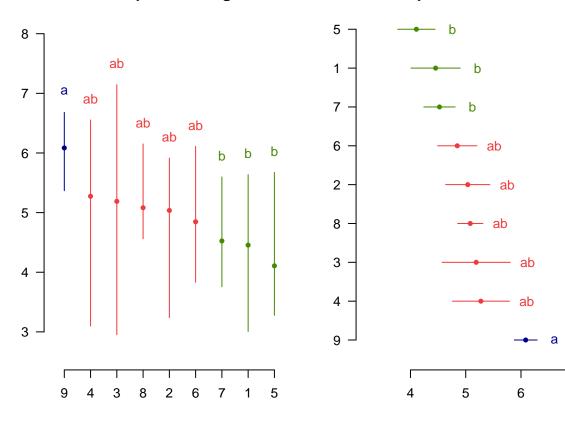
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	1.797	0.2247	0.7074	0.6835
Residuals	45	14.29	0.3176	NA	NA

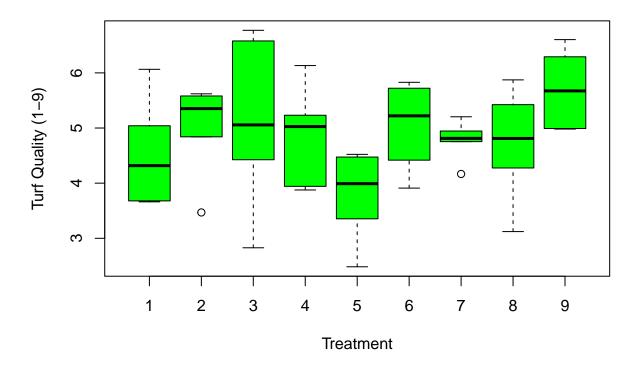
9.23 Turf Quality Reading 180 Days Post Treatment (2022-05-05)

This is 4 days post re application (6th application in total).

Turf Quality 180 Days post Treatment

Table 30: Analysis of Variance Model 180 Days post Treatment

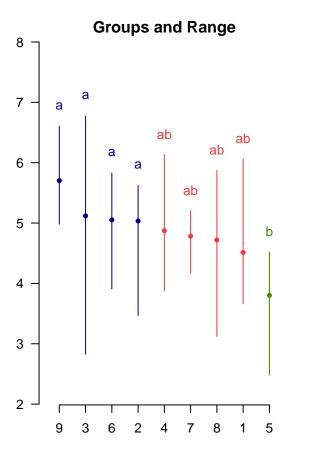

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	15.73	1.966	2.075	0.0586
Residuals	45	42.65	0.9478	NA	NA

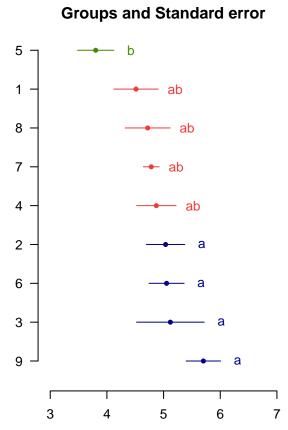

Groups and Range

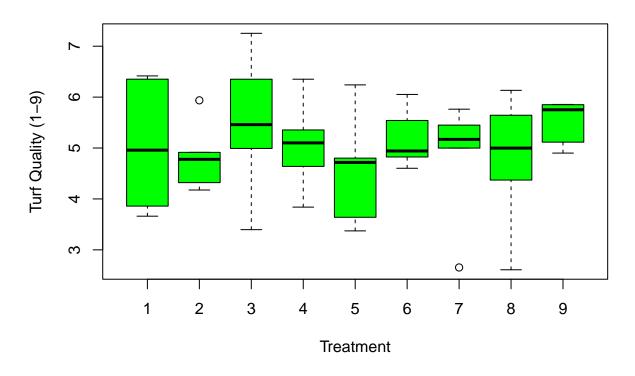
Groups and Standard error

٦

7

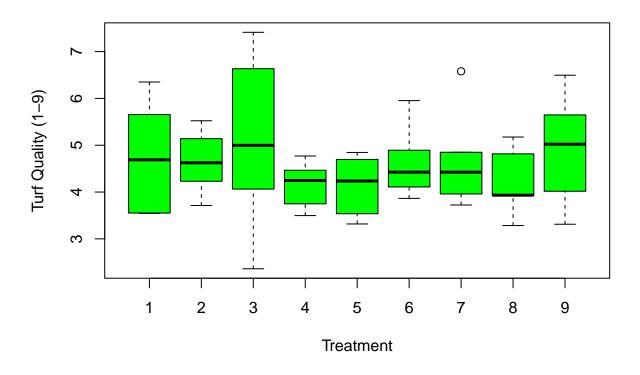



Turf Quality 187 Days post Treatment


Table 31: Analysis of Variance Model 173 Days post Treatment

	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	12.65	1.581	1.956	0.07461
Residuals	45	36.37	0.8083	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.



Turf Quality 194 Days post Treatment

Table 32: Analysis of Variance Model 194 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	4.861	0.6076	0.642	0.7382
Residuals	45	42.59	0.9464	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Turf Quality 200 Days post Treatment

Table 33: Analysis of Variance Model 200 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5.558	0.6947	0.6869	0.7007
Residuals	45	45.51	1.011	NA	NA

10 Trufirm - Surface Hardness

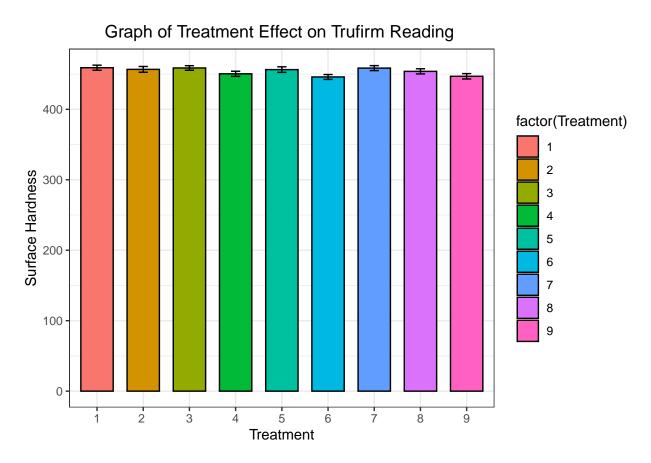
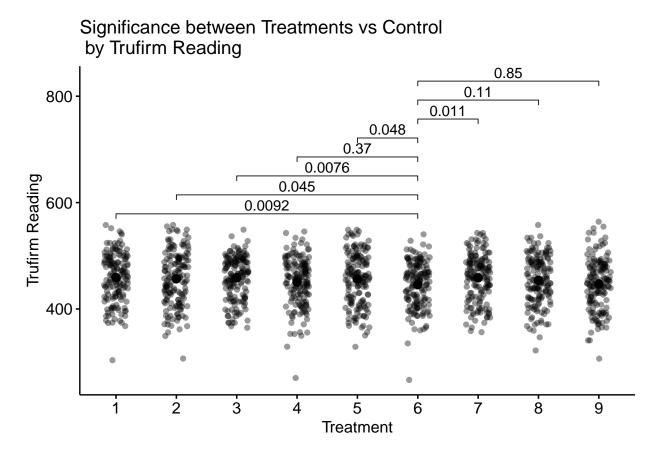
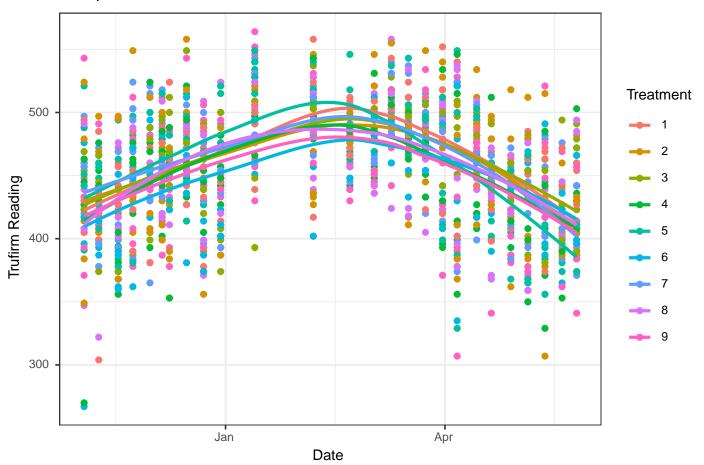
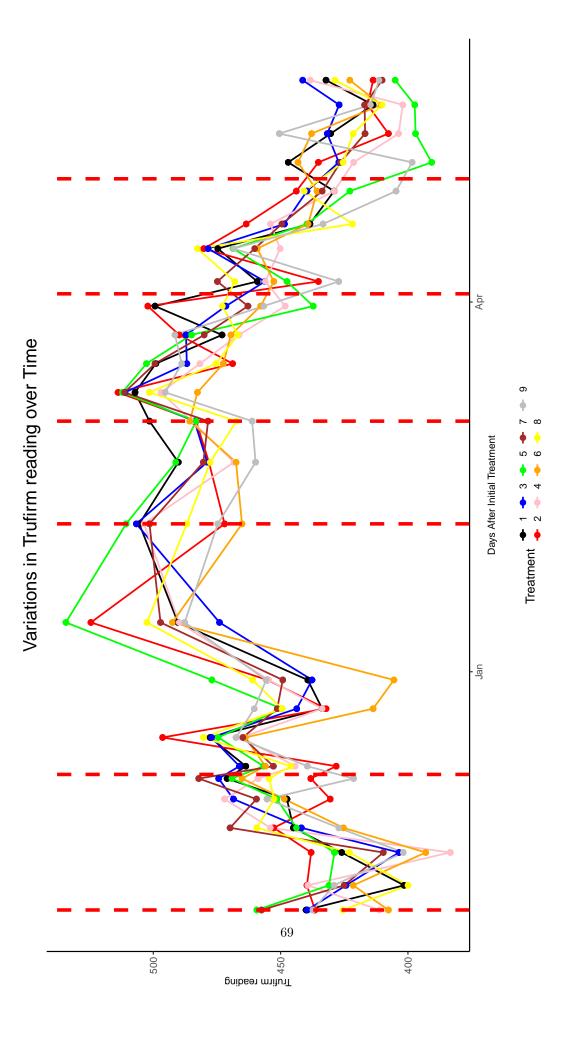

Treatment	n	Trufirm	sd	se	ci
1	156	459.1	45.23	3.621	7.153
2	156	456.7	51.21	4.1	8.099
3	156	458.7	40.63	3.253	6.427
4	156	450.4	45.44	3.638	7.187
5	156	456.4	49.56	3.968	7.839
6	156	445.9	43.24	3.462	6.839
7	156	458.5	44.06	3.528	6.968
8	156	453.9	45.32	3.628	7.167
9	156	446.9	47.73	3.821	7.549

Table 34: Statistics by Treatment


The following table shows the range of surface hardeness readings was from 445.9 (Treatment 6 - the untreated control) being the firmest to 459.1 (Treatment 1) being the softest.

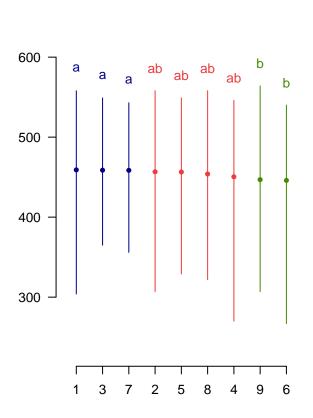
Significant differences in surface hardness and the untreated control existed with all the Treatments apart from Treatment 4, 8 and 9 being significantly softer than the untreated control.


Treatment	Trufirm
1	459.1
2	456.7
3	458.7
4	450.4
5	456.4
6	445.9
7	458.5
8	453.9
9	446.9
9	446.9


The significance of these results is shown graphically below compared to the untreated control.All Treatments gave significantly higher leaf areas.

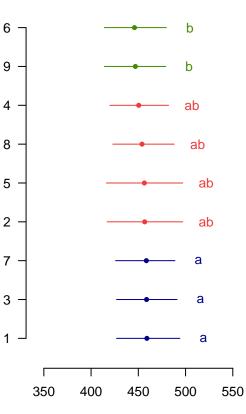
Over the duration of the trial the general trend was for the greens to become softer when using soil wetting agents.

Comparative variations in Trufirm over Time

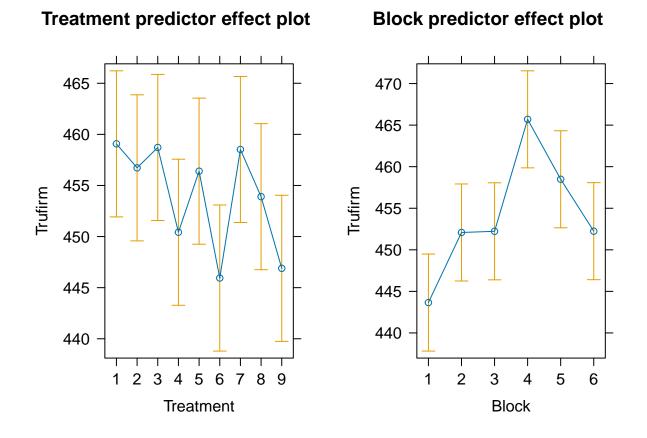

Analysis showed that the Treatment has a significant effect in relation to surface hardness.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
factor(Treatment)	8	32727	4091	1.94	0.05073
Residuals	1395	2942393	2109	NA	NA

Table 36: Analysis of Variance Model


Table 37: Analysis of Variance Table

	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Block	5	64083	12817	6.217	1.037e-05
Treatment	8	32727	4091	1.985	0.04503
Date	1	2812	2812	1.364	0.243
Treatment:Date	8	28679	3585	1.739	0.08515
Residuals	1381	2846819	2061	NA	NA


Groups and Range

Groups and Interquartile range

	, -	- 13	е 	4	- 5	9 	2 -	ω 	တ ၂	– Average	
6 –	461.7	440.6	466	460.9	463.2	440.1	442.1	449	446.5	452.2]
5 –	442.3	460.5	465	461.3	464.5	444	469.5	463.5	455.8	458.5	
4 –	455.7	503	462.7	457	456	464.5	479	474.4	438.8	465.7	
3 –	462.6	472.6	459.9	434.7	454.7	452	443.4	446	444.1	452.2	
2 –	482.9	438.3	451.6	461.6	444.1	444.8	454.5	464.2	426.8	452.1	
1 –	449.2	425.3	447	427	455.9	430.2	462.7	426.3	469.3	443.7	
verage –	459.1	456.7	458.7	450.4	456.4	445.9	458.5	453.9	446.9	454.1	

Figure 14: Trufirm plot means for Treatment and Block

11 Block Effect with Treatment on Trufirm

There was a significant variation in Trufirm readings over the blocks with Block 4 being the softest and Block 1 the hardest.

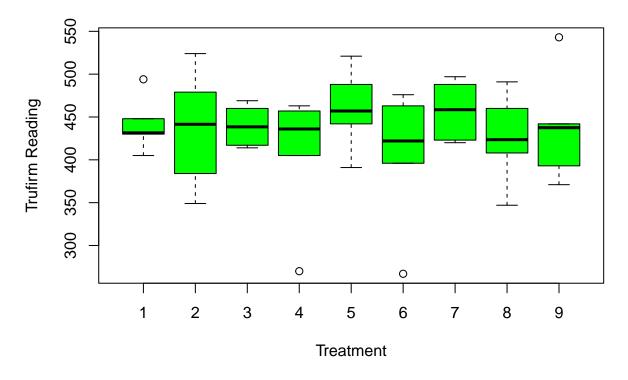
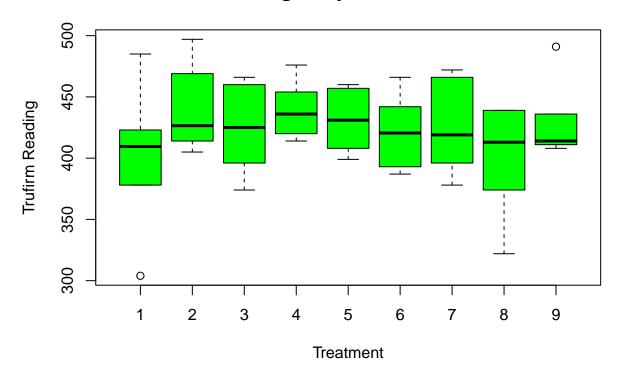



Table 38: Significance of Results by Treatment, Block and Days after Initial Treatment

	Df	Sum Sq	$\mathrm{Mean}\ \mathbf{Sq}$	F value	$\Pr(>F)$
Block	1	19118	19118	13.22	0.0002897
Treatment	8	32727	4091	2.828	0.004123
DAT	25	991477	39659	27.42	4.492e-99
Treatment:DAT	200	240739	1204	0.8321	0.949
Residuals	1169	1691058	1447	NA	NA

11.1 Trufirm Reading Pre Treatment (2022-11-04)

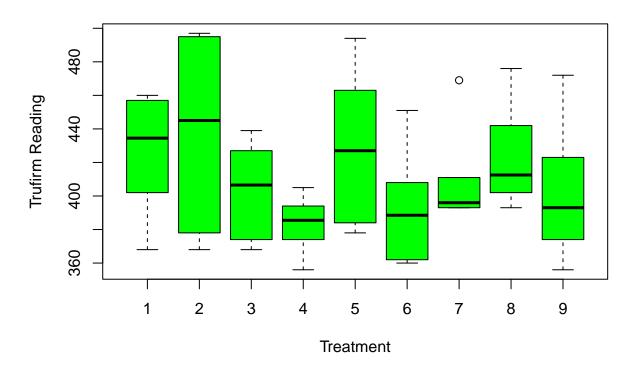


Trufirm Reading Pre Treatment

Table 39: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	15340	1917	0.6791	0.7073
Residuals	45	127059	2824	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference between treatments before the trial starts.

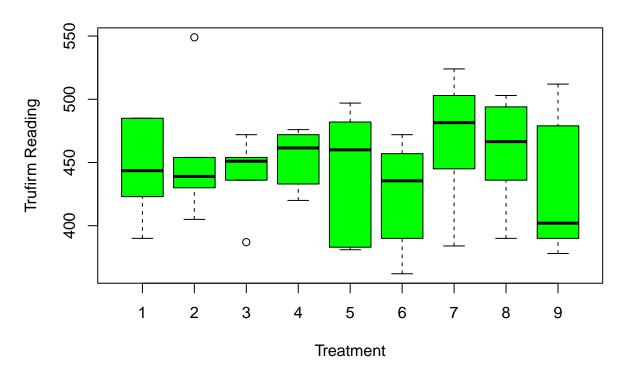


Trufirm Reading 3 Days Post First Treatment

Table 40: Analysis of Variance Model Day 3

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	9850	1231	0.8441	0.5694
Residuals	45	65643	1459	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference between Treatments after 3 days.

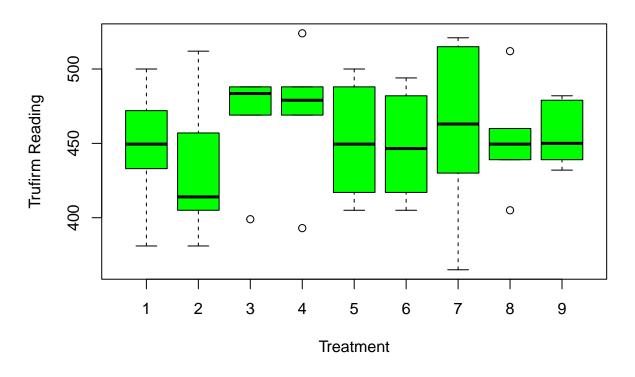


Trufirm Reading 11 Days Post First Treatment

Table 41: Analysis of Variance Model Day 11

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	15841	1980	1.464	0.1972
Residuals	45	60850	1352	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference between treatments 11 days after.

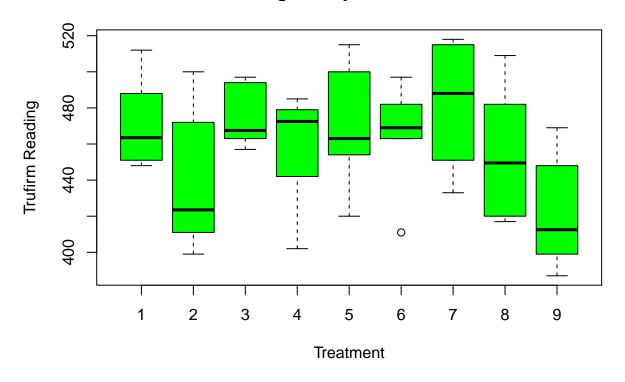


Trufirm Reading 17 Days Post First Treatment

Table 42: Analysis of Variance Model Day 17

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	9938	1242	0.6595	0.7237
Residuals	45	84761	1884	NA	$\mathbf{N}\mathbf{A}$

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

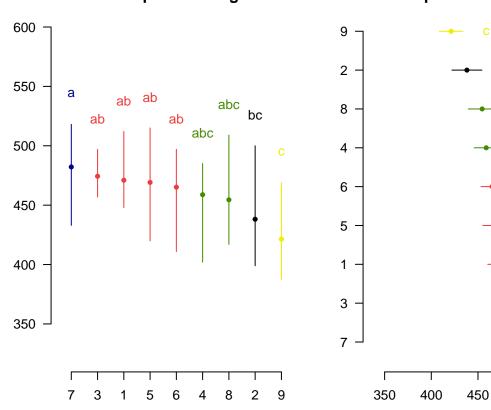


Trufirm Reading 24 Days Post First Treatment

Table 43: Analysis of Variance Model Day 24

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7197	899.6	0.555	0.8085
Residuals	45	72946	1621	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Trufirm Reading 29 Days Post First Treatment

Table 44: Analysis of Variance Model Day 29

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	17573	2197	2.203	0.04506
Residuals	45	44872	997.2	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels. This was the day before the second application. Although no significant difference existed between the Treatments and the untreated control Treatment 7 was significantly softer than Treatment 9.

Groups and Range

Groups and Standard error

bc

- abc

abc

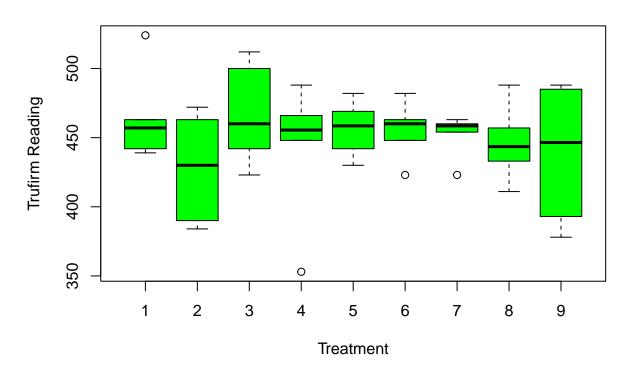
ab

ab

ab

ab

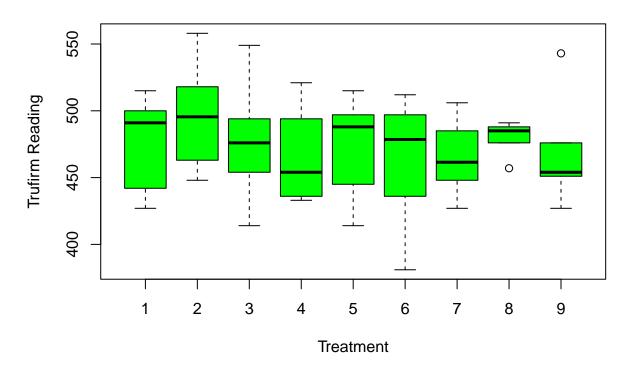
Т


500

а

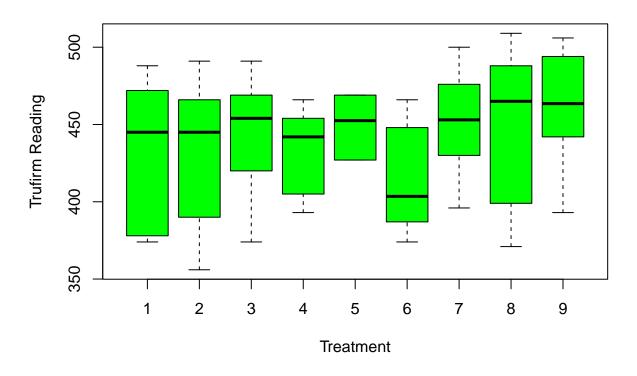
٦

550


11.7 Trufirm Reading 32 Days Post Treatment (2022-12-09)

Trufirm Reading 32 Days Post First Treatment

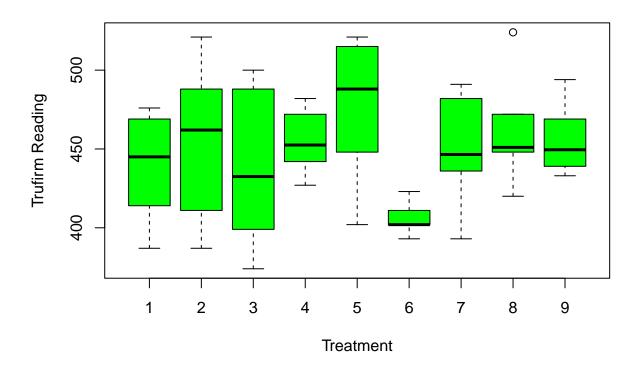
Table 45: Analysis of Variance Model Day 32


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7023	877.8	0.8364	0.5757
Residuals	45	47226	1049	NA	NA

Trufirm Reading 39 Days Post First Treatment

Table 46: Analysis of Variance Model Day 39

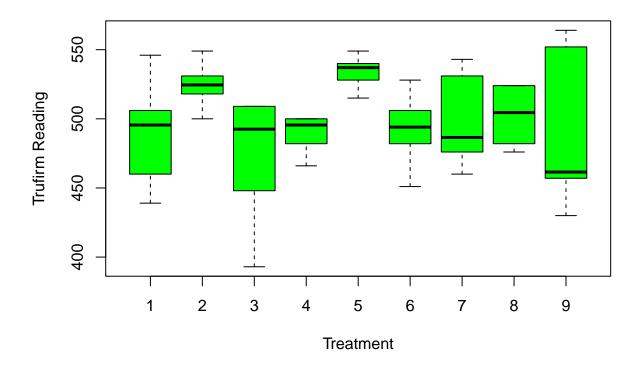
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5203	650.3	0.4723	0.8691
Residuals	45	61957	1377	NA	NA



Trufirm Reading 46 Days Post First Treatment

Table 47: Analysis of Variance Model Day 46

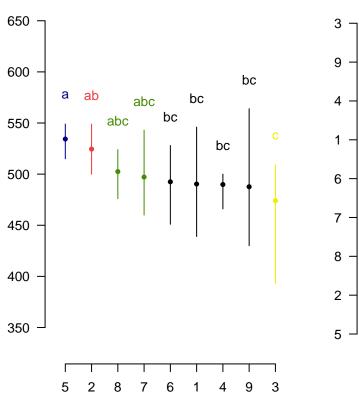
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	9388	1173	0.6837	0.7034
Residuals	45	77234	1716	NA	$\mathbf{N}\mathbf{A}$


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Trufirm Reading 53 Days Post First Treatment

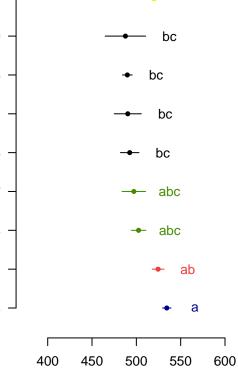
Table 48: Analysis of Variance Model Day 53

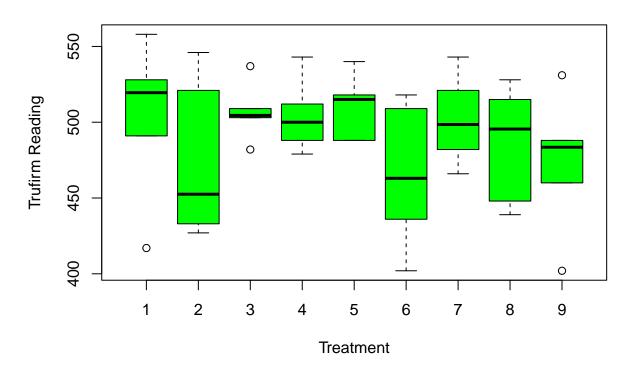
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	18918	2365	1.783	0.1057
Residuals	45	59682	1326	NA	NA



Trufirm Reading 67 Days Post First Treatment

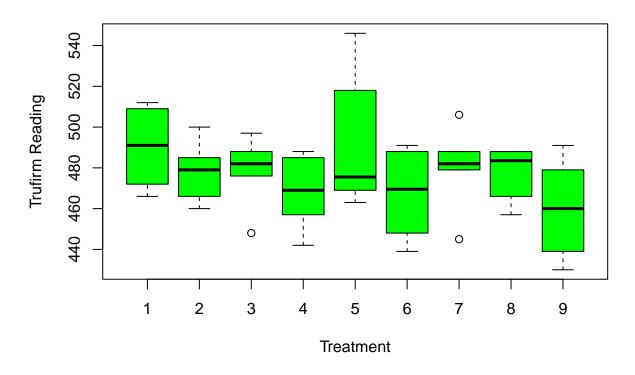
Table 49: Analysis of Variance Model Day 67


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	17213	2152	2.079	0.05803
Residuals	45	46564	1035	NA	NA


In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

Groups and Range

Groups and Standard error

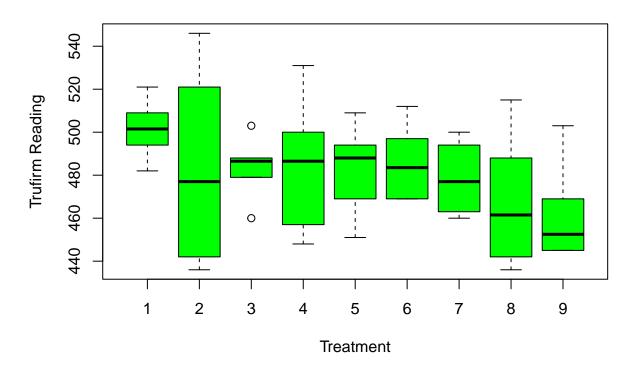


Trufirm Reading 91 Days Post First Treatment

Table 50: Analysis of Variance Model Day 91

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	14515	1814	1.367	0.237
Residuals	45	59746	1328	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

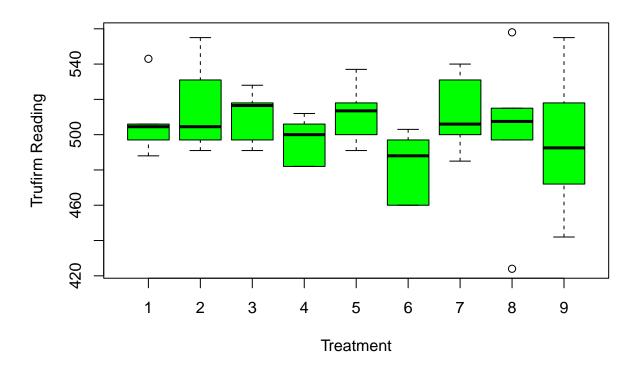


Trufirm Reading 106 Days Post First Treatment

Table 51: Analysis of Variance Model Day 106

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5102	637.7	1.484	0.1901
Residuals	45	19344	429.9	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

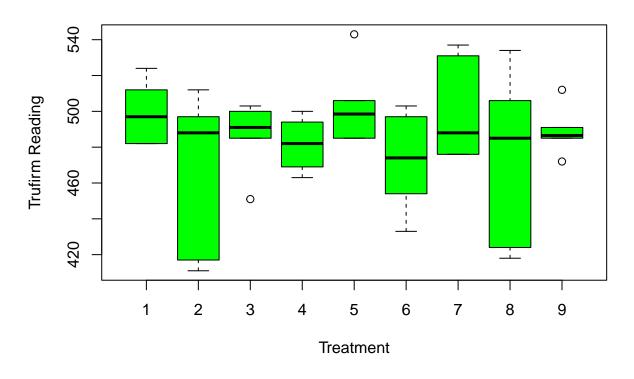


Trufirm Reading 116 Days Post First Treatment

Table 52: Analysis of Variance Model Day 116

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6363	795.4	1.239	0.2994
Residuals	45	28898	642.2	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

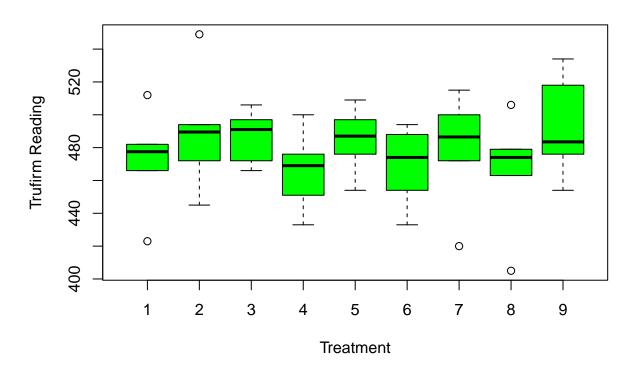


Trufirm Reading 123 Days Post First Treatment

Table 53: Analysis of Variance Model Day 123

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5174	646.8	1.016	0.4381
Residuals	45	28653	636.7	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

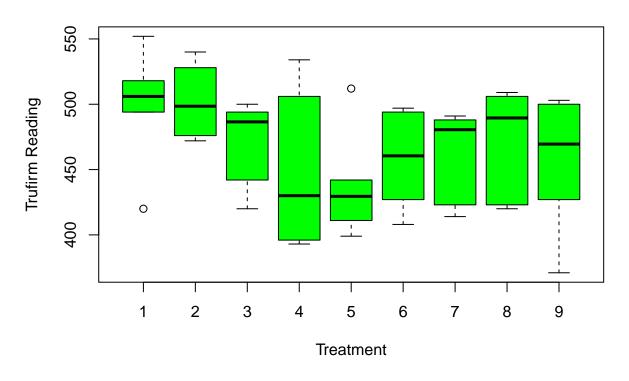


Turf Quality 130 Days post Treatment

Table 54: Analysis of Variance Model 130 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7456	932	1.199	0.3214
Residuals	45	34987	777.5	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Trufirm Reading 137 Days post Treatment

Table 55: Analysis of Variance Model 137 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	4870	608.7	0.8079	0.5991
Residuals	45	33905	753.4	NA	NA

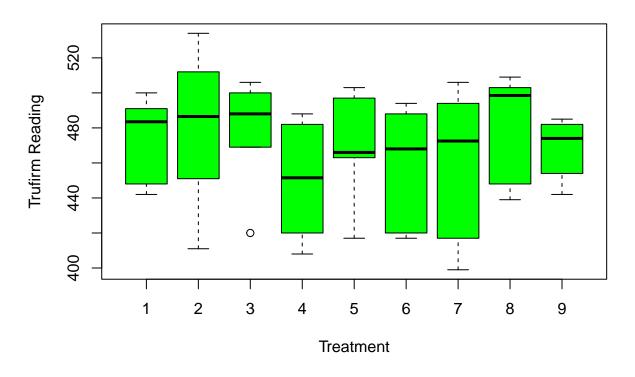
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Trufirm Reading 144 Days post Treatment

Table 56: Analysis of Variance Model 144 Days post Treatment

	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	22716	2839	1.603	0.151
Residuals	45	79731	1772	NA	NA

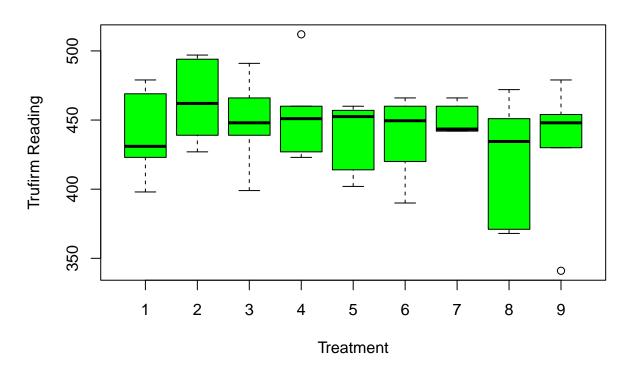
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Trufirm Reading 151 Days post Treatment

Table 57: Analysis of Variance Model 151 Days post Treatment

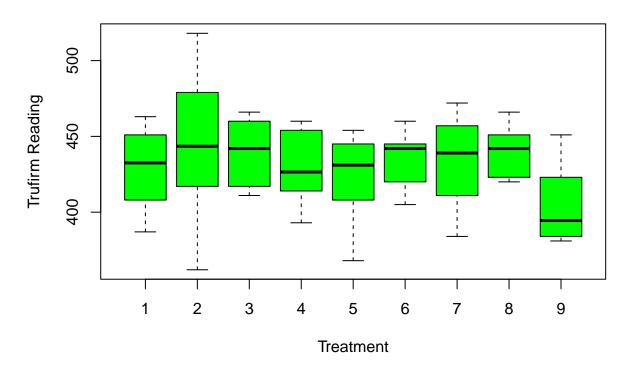
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	10647	1331	0.2506	0.9782
Residuals	45	239009	5311	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Trufirm Reading 159 Days post Treatment

Table 58: Analysis of Variance Model 159 Days post Treatment

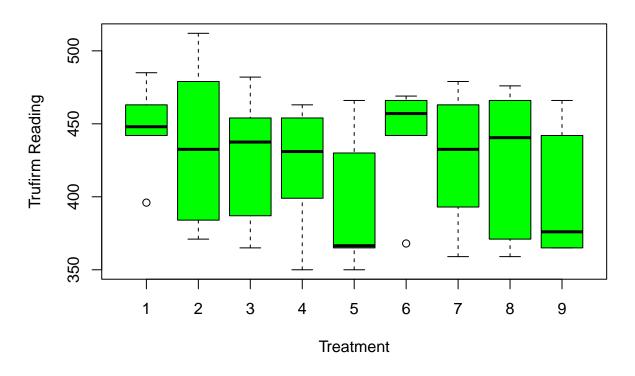
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	5780	722.5	0.6562	0.7264
Residuals	45	49544	1101	NA	NA



Trufirm Reading 165 Days post Treatment

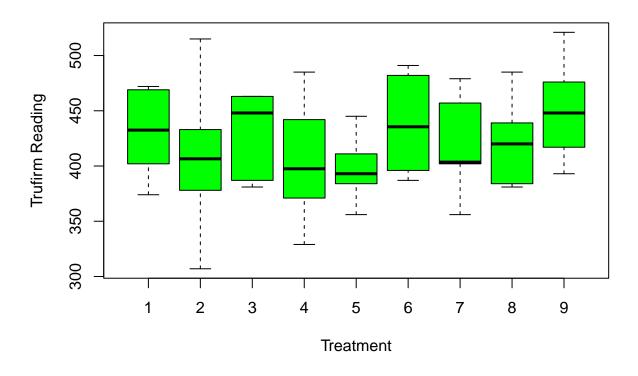
Table 59: Analysis of Variance Model 165 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7207	900.9	0.8491	0.5654
Residuals	45	47744	1061	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Trufirm Reading 173 Days post Treatment

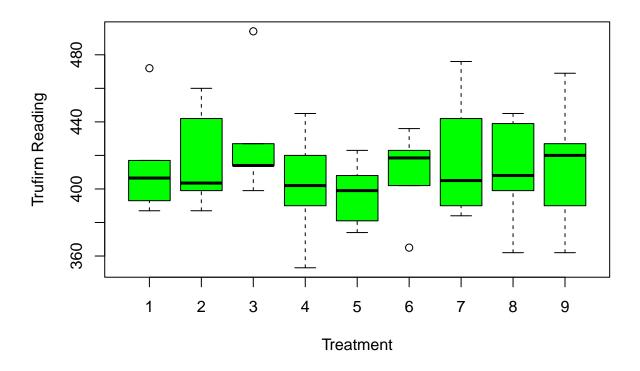
Table 60: Analysis of Variance Model 173 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6782	847.7	0.9064	0.5197
Residuals	45	42084	935.2	NA	NA

Trufirm Reading 180 Days post Treatment

Table 61: Analysis of Variance Model 180 Days post Treatment

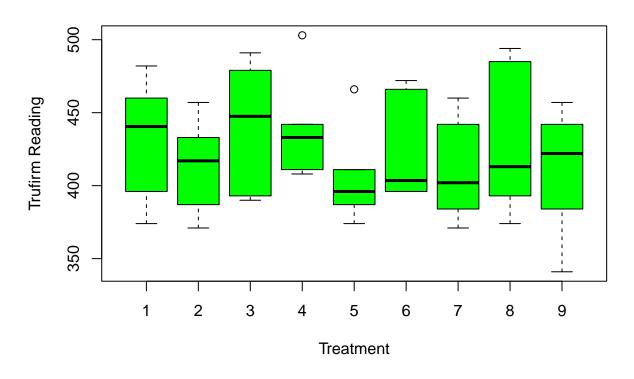
	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	16899	2112	1.057	0.4096
Residuals	45	89941	1999	NA	NA



Trufirm Reading 187 Days post Treatment

Table 62: Analysis of Variance Model 187 Days post Treatment

	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	14515	1814	0.8428	0.5705
Residuals	45	96876	2153	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Trufirm Reading 194 Days post Treatment

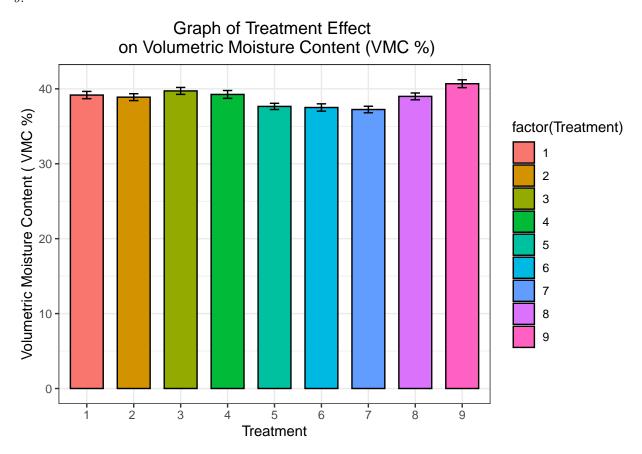
Table 63: Analysis of Variance Model 194 Days post Treatment

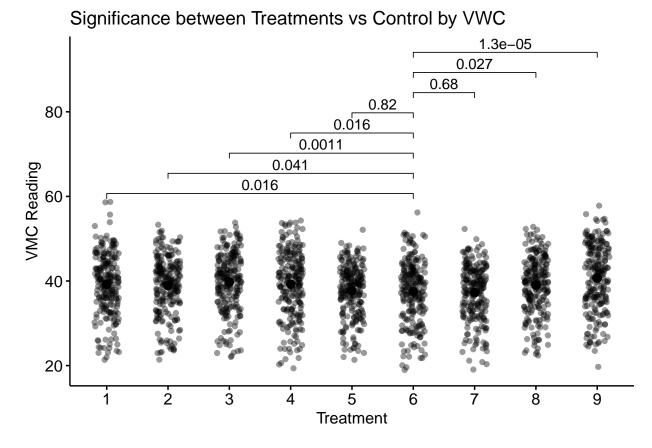
	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	3572	446.5	0.4854	0.8601
Residuals	45	41393	919.8	NA	NA

Trufirm Reading 200 Days post Treatment

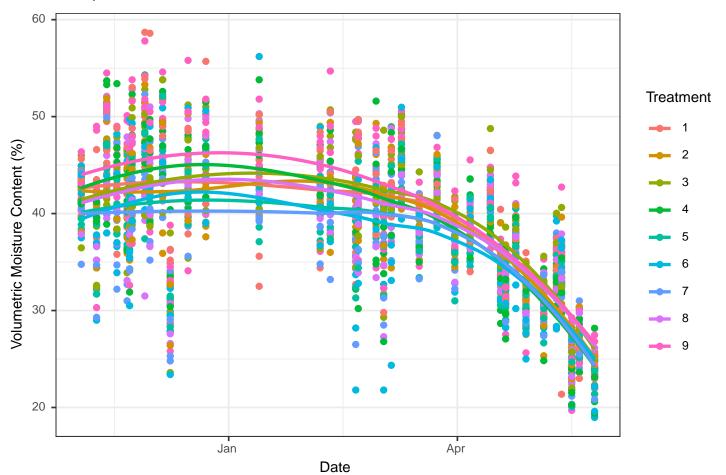
Table 64: Analysis of Variance Model 200 Days post Treatment

	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	8388	1048	0.6786	0.7077
Residuals	45	69525	1545	NA	NA

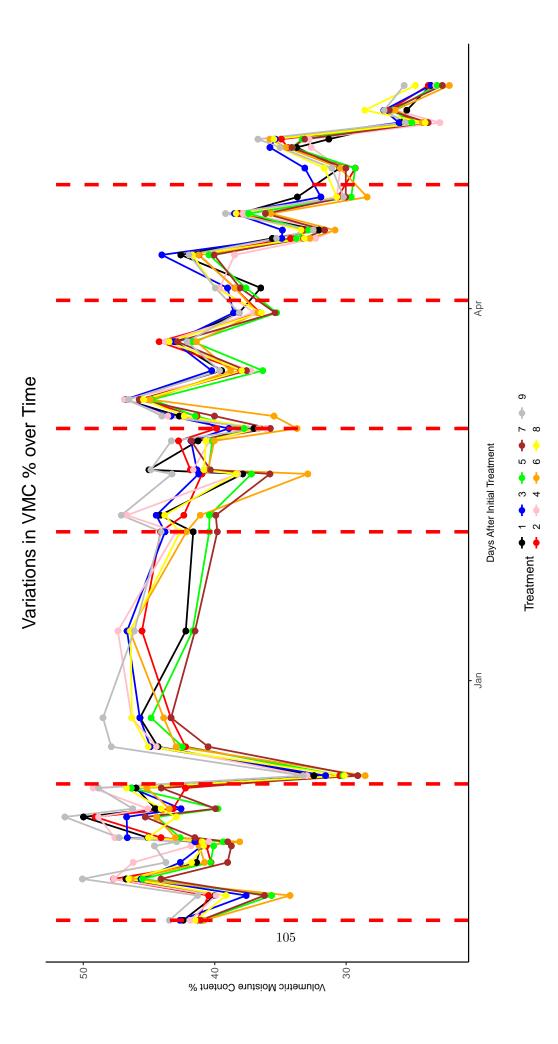

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.


12 Volumetric Moisture Content (VMC %)

Treatment	n	VWC	sd	se	ci
1	222	39.17	7.224	0.4849	0.9556
2	222	38.89	6.839	0.459	0.9046
3	222	39.72	6.904	0.4633	0.9131
4	222	39.25	7.802	0.5237	1.032
5	222	37.65	6.184	0.415	0.818
6	222	37.51	7.311	0.4907	0.967
7	222	37.24	6.495	0.4359	0.8591
8	222	38.99	6.759	0.4536	0.894
9	222	40.68	7.82	0.5248	1.034


Table 65: Volumetric Moisture Content % by Treatment

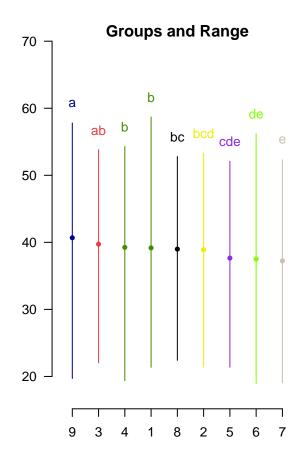
The lowest mean moisture content was Treatment 6 (untreated control) and the highest was Treatment 9.



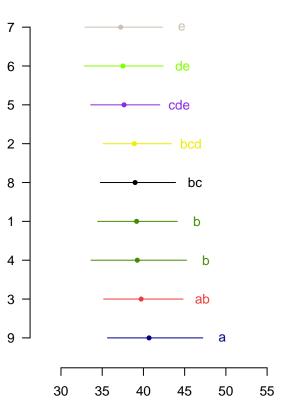
When we look at the between treatment effects we can see significant differences existed between all of the Treatments and the untreated control apart from Treatments 5 and Treatment 7 (half rates of Hydroforce Ultra).

Comparative variations in Soil Moisture over Time

Over the trial duration soil moisture contents all fell.

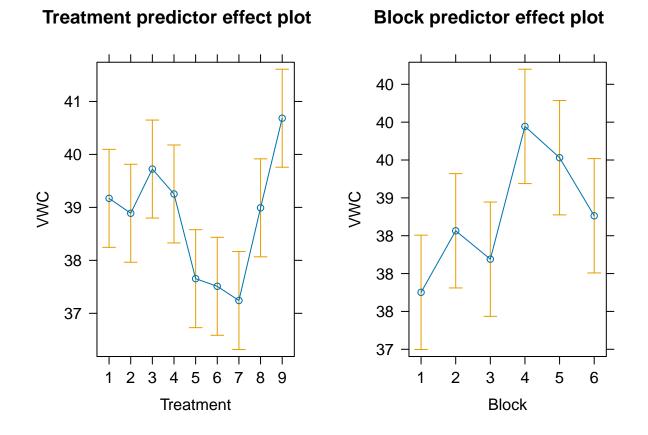

Analysis showed that the Treatment has a significant effect in relation to soil moisture content.

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
factor(Treatment)	8	2262	282.8	5.679	3.705e-07
Residuals	1989	99056	49.8	NA	NA


Table 66: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Block	5	1122	224.3	7.047	1.54e-06
Treatment	8	2262	282.8	8.884	5.069e-12
Date	1	34457	34457	1083	1.126e-189
Treatment:Date	8	611.3	76.41	2.4	0.01413
Residuals	1975	62866	31.83	NA	NA

Table 67: Analysis of Variance Table



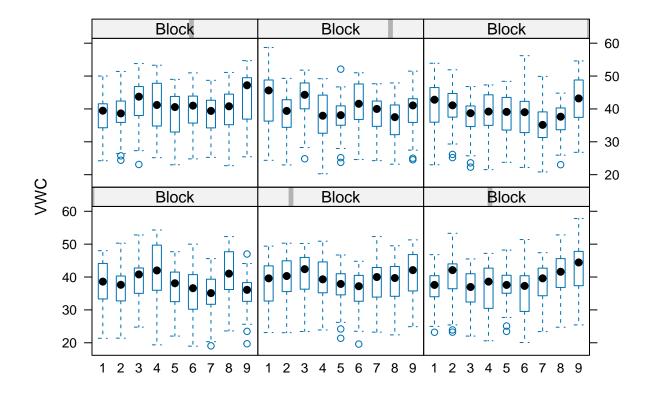
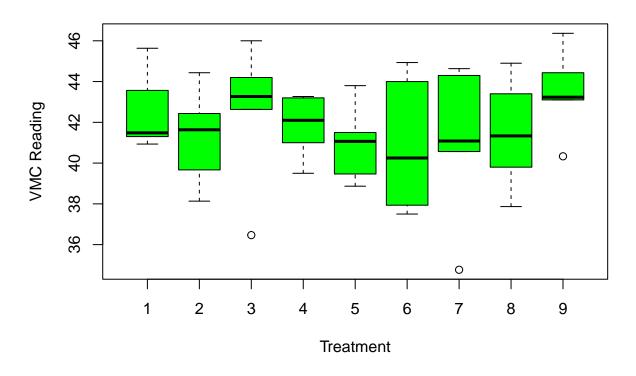

		- 7	ი ს	4	- 5	9	2 -	ω - Ι	ග 	– Average	
6 –	40.9	40.6	37.8	38.7	38.5	37.7	35.1	36.9	42.7	38.8	
5 –	43.1	38.3	42.9	38.1	37.5	40.8	38.5	36.9	39.7	39.5	43
4 –	38.2	38.5	41.8	41.4	38.7	39.5	38.5	39.3	43.6	39.9	41
3 –	36.7	40.4	36.1	36.7	37.2	35.5	38.1	40.7	42.4	38.2	39
2 –	38.1	39.1	40.3	39	36.8	35.9	38.3	38.7	40.7	38.6	37
1 –	38	36.3	39.5	41.6	37.2	35.7	34.9	41.5	35	37.8	
Average -	39.2	38.9	39.7	39.3	37.7	37.5	37.2	39	40.7	38.8	35

Figure 15: Volumetric Moisture Content plot means for Treatment and block

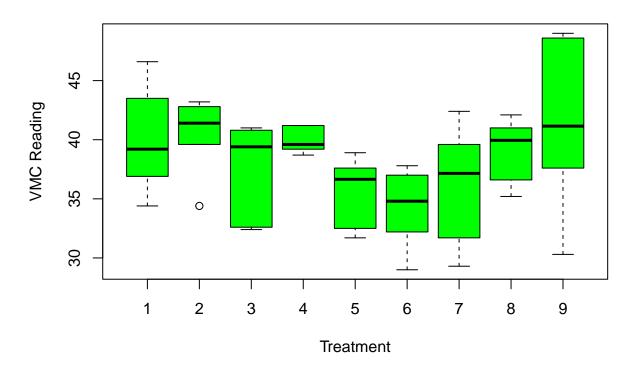
12.1 Block Effect with Treatment on VWC


In all the Blocks the distinct variations in soil moisture content were evident.

There appeared to be an interaction between both the Treatment and Block factors

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Block	1	448.1	448.1	36.13	2.269e-09
Treatment	8	2262	282.8	22.8	2.505e-33
DAT	36	74760	2077	167.4	0
Treatment:DAT	288	3210	11.14	0.8985	0.8748
Residuals	1664	20639	12.4	NA	NA

Table 68: Significance of Results by Treatment, Block and Days after Initial Treatment



Volumetric Moisture Content Pre Treatment

Table 69: Analysis of Variance Model Pre Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	38.12	4.765	0.7375	0.658
Residuals	45	290.7	6.461	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in soil moisture levels prior to treatment.

Volumetric Moisture Content 3 Days post Treatment

Table 70: Analysis of Variance Model 3 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	286.9	35.86	2.121	0.05324
Residuals	45	760.6	16.9	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

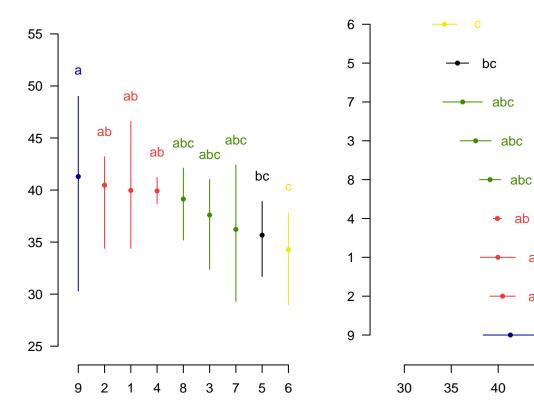
Groups and Standard error

ab •

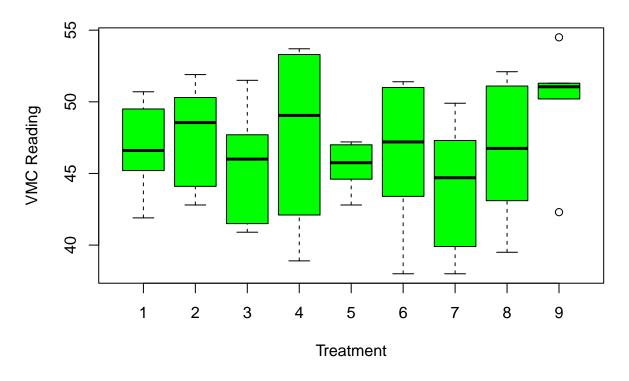
ab

ab

а


Т

45


Т

٦

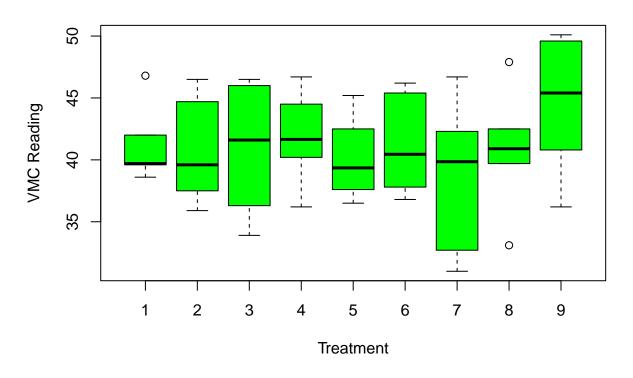
50

112

Volumetric Moisture Content 7 Days post Treatment

Table 71: Analysis of Variance Model 7 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	137.4	17.17	0.9075	0.5188
Residuals	45	851.4	18.92	NA	NA

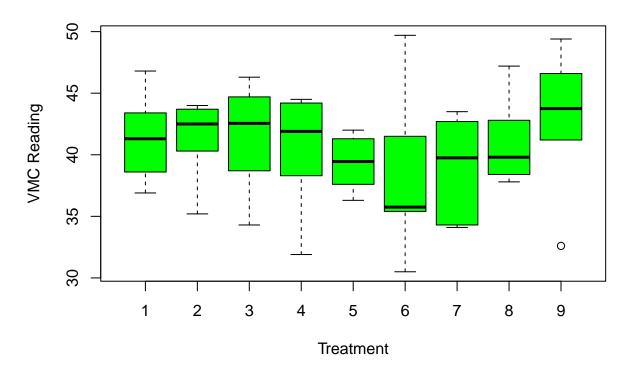


Volumetric Moisture Content 11 Days post Treatment

Table 72: Analysis of Variance Model 11 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	223.1	27.89	1.613	0.1479
Residuals	45	777.9	17.29	NA	NA

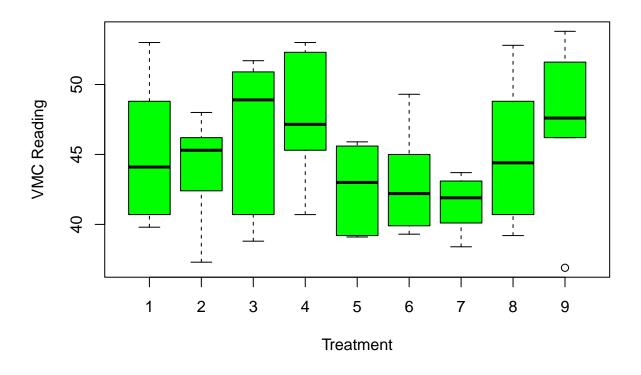
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Volumetric Moisture Content 15 Days post Treatment

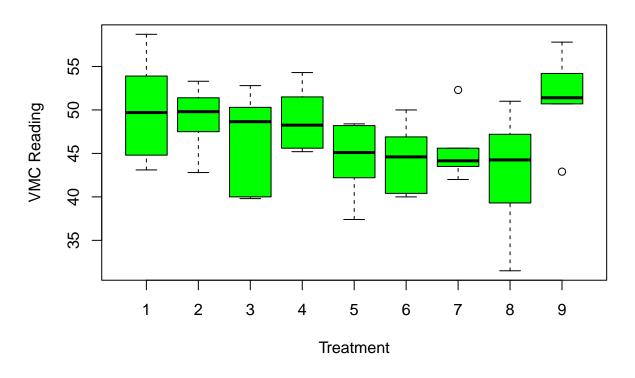
Table 73: Analysis of Variance Model 15 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	117.6	14.69	0.7271	0.6668
Residuals	45	909.4	20.21	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Volumetric Moisture Content 16 Days post Treatment

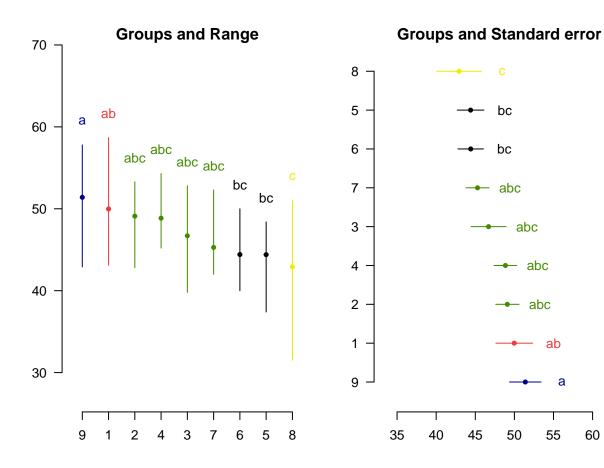
Table 74: Analysis of Variance Model Pre Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	106.3	13.29	0.666	0.7183
Residuals	45	897.8	19.95	NA	NA

Volumetric Moisture Content 17 Days post Treatment

Table 75: Analysis of Variance Model 17 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	221.1	27.64	1.339	0.2495
Residuals	45	928.8	20.64	NA	NA



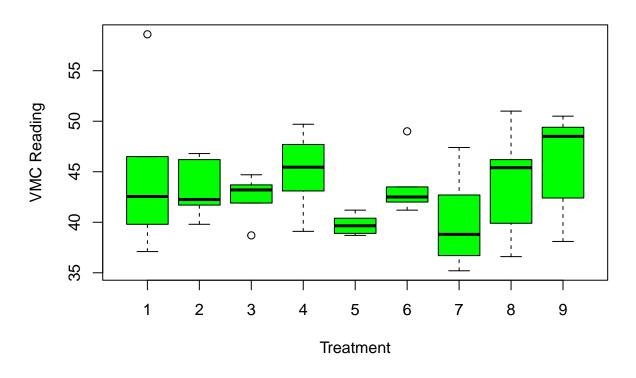

Volumetric Moisture Content 22 Days post Treatment

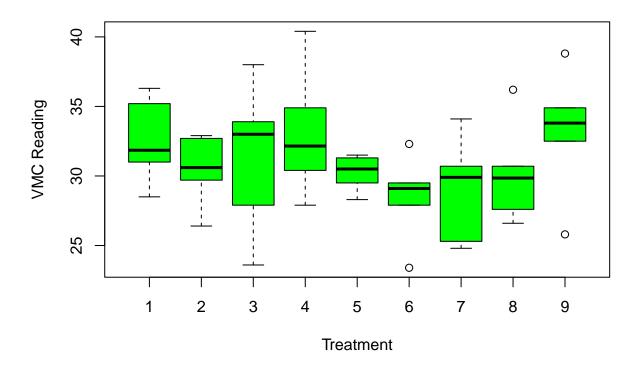
Table 76: Analysis of Variance Model 22 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	415.4	51.93	2.24	0.04177
Residuals	45	1043	23.18	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

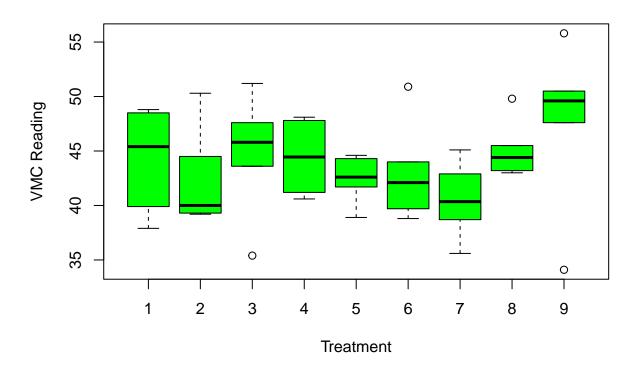
Volumetric Moisture Content 24 Days post Treatment

Table 77: Analysis of Variance Model 24 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	229.8	28.73	1.583	0.1569
Residuals	45	816.5	18.15	NA	NA

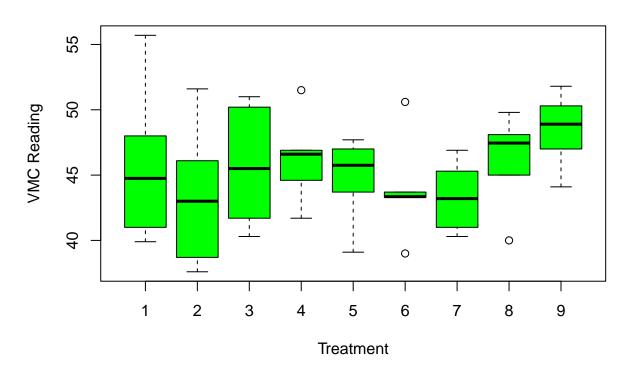
Volumetric Moisture Content 29 Days post Treatment

Table 78: Analysis of Variance Model 29 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	228.3	28.53	1.758	0.1111
Residuals	45	730.3	16.23	NA	NA

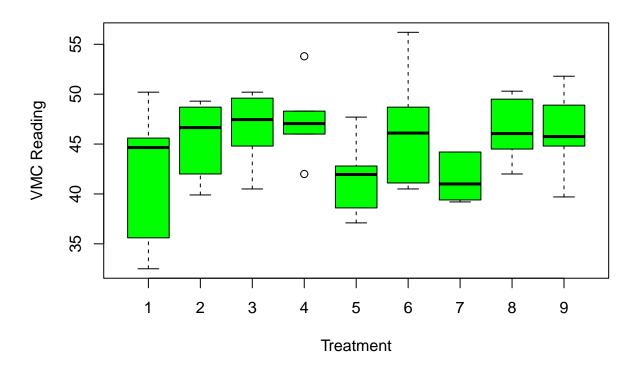
Volumetric Moisture Content 32 Days post Treatment

Table 79: Analysis of Variance Model 32 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	135.6	16.95	1.37	0.2357
Residuals	45	556.8	12.37	NA	NA

Volumetric Moisture Content 39 Days post Treatment

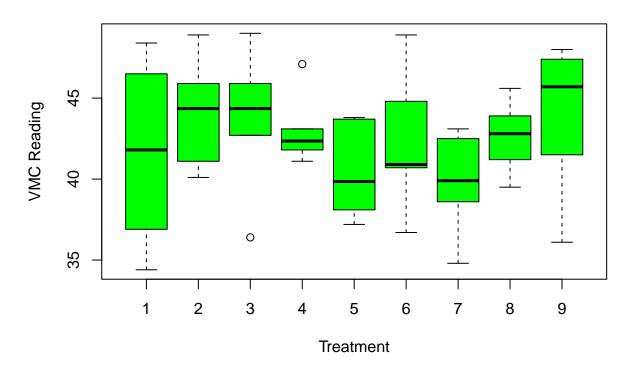
Table 80: Analysis of Variance Model 39 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	215.5	26.94	1.395	0.2246
Residuals	45	868.8	19.31	NA	NA

Volumetric Moisture Content 46 Days post Treatment

Table 81: Analysis of Variance Model 46 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	135.6	16.95	1.098	0.3825
Residuals	45	694.9	15.44	NA	NA

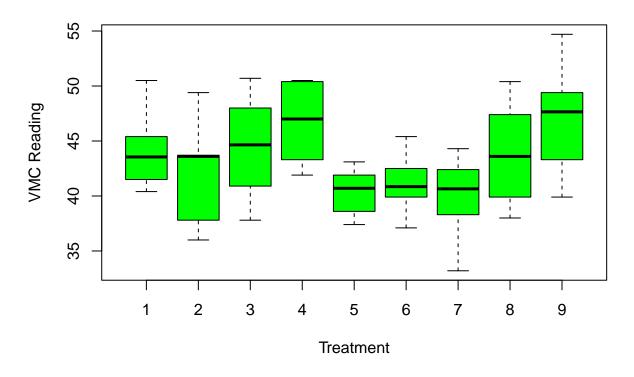


Volumetric Moisture Content 67 Days post Treatment

Table 82: Analysis of Variance Model 67 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	269.6	33.7	1.815	0.09911
Residuals	45	835.5	18.57	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Volumetric Moisture Content 91 Days post Treatment

Table 83: Analysis of Variance Model 91 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	116.1	14.52	1.059	0.408
Residuals	45	616.7	13.71	NA	NA

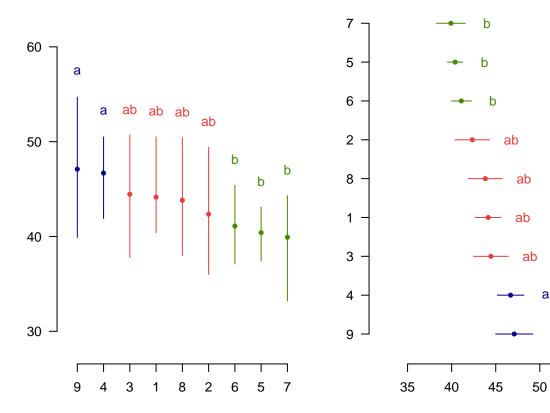
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

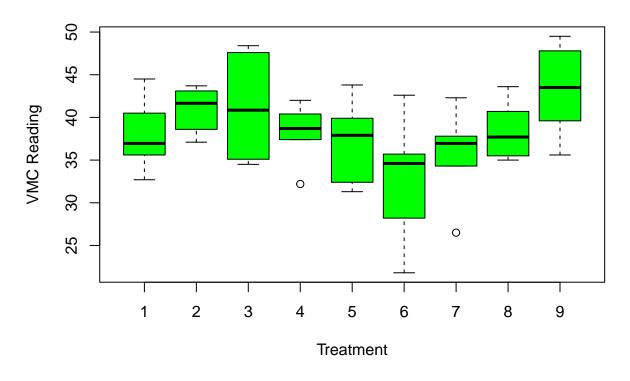
Volumetric Moisture Content 95 Days post Treatment

Table 84: Analysis of Variance Model 95 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	322.7	40.34	2.419	0.02886
Residuals	45	750.4	16.67	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.


Groups and Standard error


а

а

٦

55

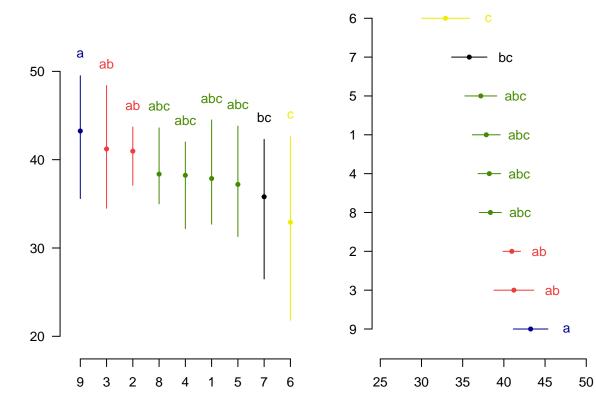
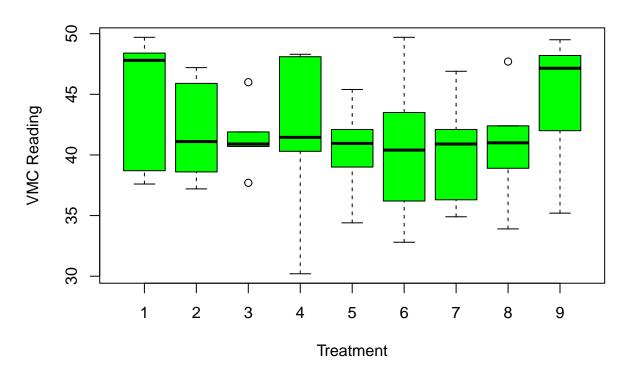
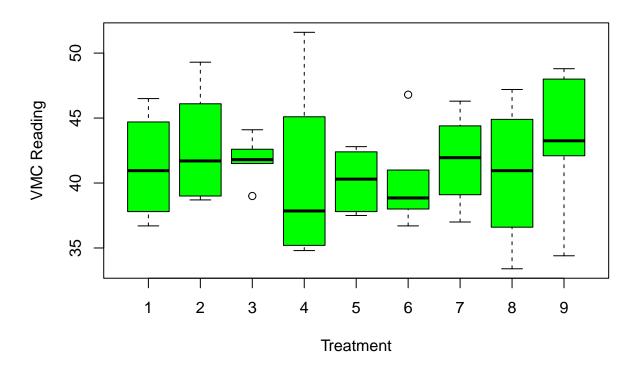

Volumetric Moisture Content 105 Days post Treatment

Table 85: Analysis of Variance Model 105 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	459.7	57.46	2.477	0.02564
Residuals	45	1044	23.2	NA	NA

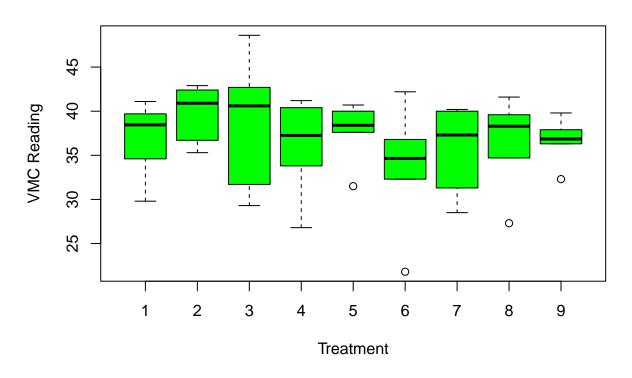
In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

Groups and Standard error


12.19 VMC Reading 106 Days Post Treatment (2022-02-21)

Volumetric Moisture Content 106 Days post Treatment

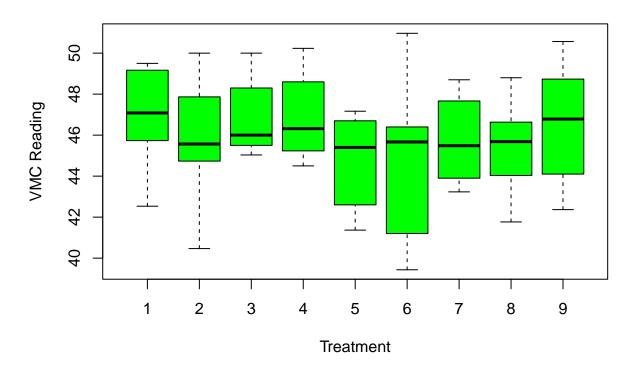
Table 86: Analysis of Variance Model 106 Days post Treatment


	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	158.5	19.82	0.8371	0.5751
Residuals	45	1065	23.67	NA	NA

Volumetric Moisture Content 113 Days post Treatment

Table 87: Analysis of Variance Model 113 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	63.74	7.968	0.4286	0.8976
Residuals	45	836.5	18.59	NA	NA

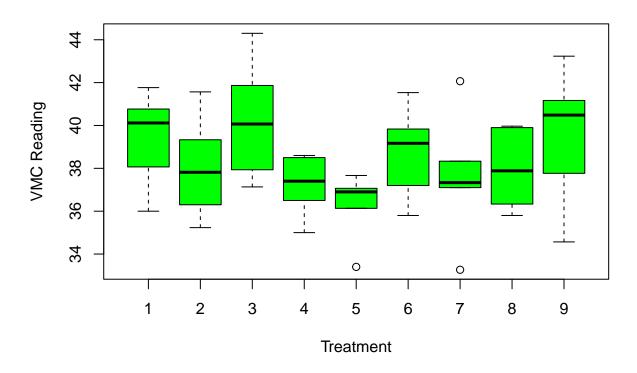


Volumetric Moisture Content 116 Days post Treatment

Table 88: Analysis of Variance Model 116 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	153.4	19.18	0.7795	0.6227
Residuals	45	1107	24.6	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

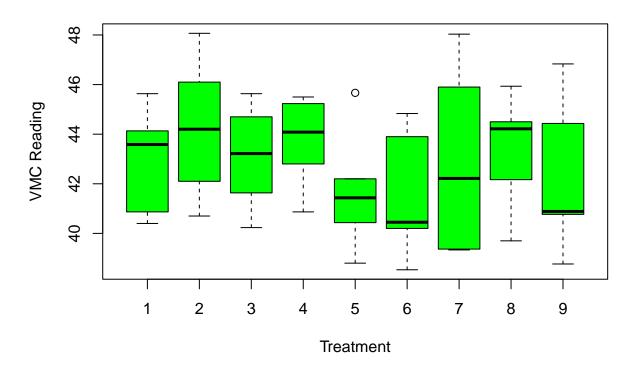


Volumetric Moisture Content 123 Days post Treatment

Table 89: Analysis of Variance Model 123 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	33.8	4.225	0.5681	0.7982
Residuals	45	334.7	7.437	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

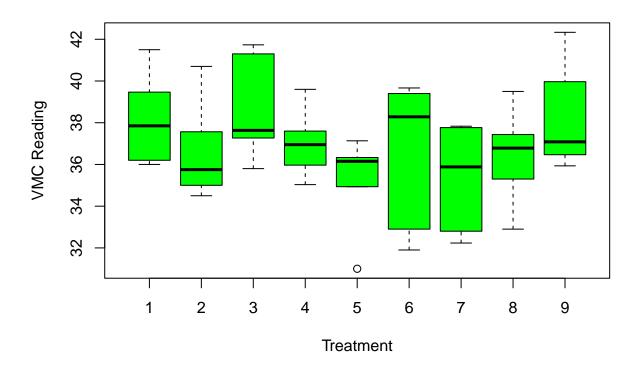


Volumetric Moisture Content 130 Days post Treatment

Table 90: Analysis of Variance Model 130 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	76.3	9.538	1.897	0.08399
Residuals	45	226.2	5.027	NA	NA

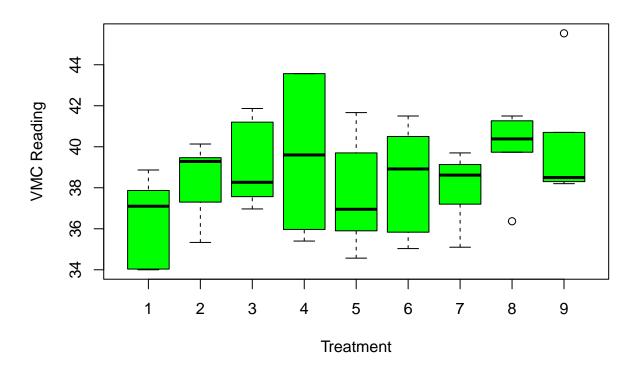
In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



Volumetric Moisture Content 137 Days post Treatment

Table 91: Analysis of Variance Model 137 Days post Treatment

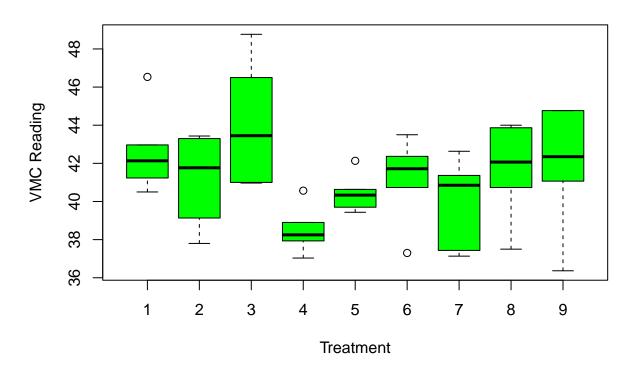
	Df	Sum Sq	$Mean \ Sq$	F value	$\Pr(>F)$
Treatment	8	43.78	5.472	0.8768	0.5431
Residuals	45	280.9	6.241	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Volumetric Moisture Content 144 Days post Treatment

Table 92: Analysis of Variance Model 137 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	66.51	8.314	1.393	0.2255
Residuals	45	268.5	5.967	NA	NA

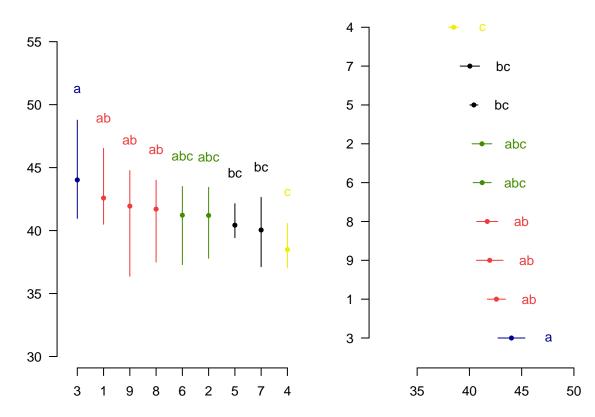


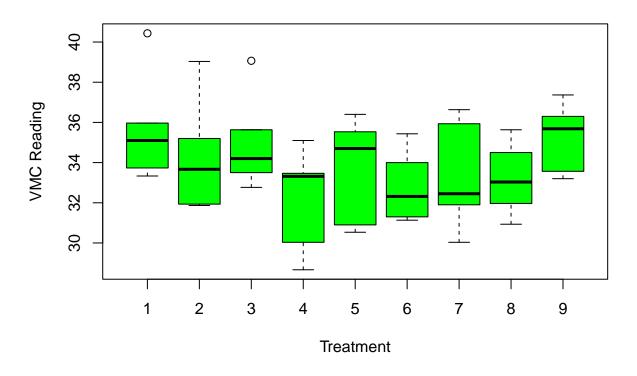
Volumetric Moisture Content 151 Days post Treatment

Table 93: Analysis of Variance Model 151 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	63.34	7.917	1.308	0.264
Residuals	45	272.4	6.053	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

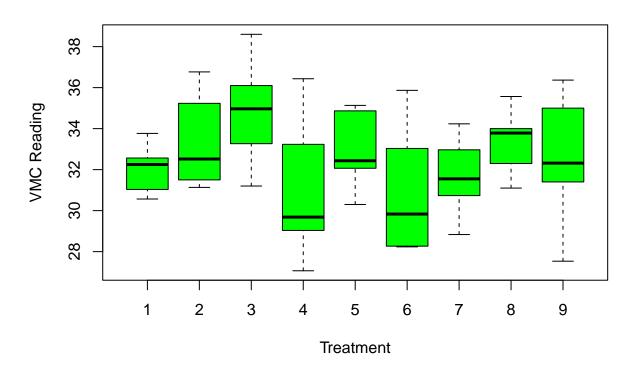

Volumetric Moisture Content 159 Days post Treatment


Table 94: Analysis of Variance Model 159 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	119.4	14.92	2.816	0.01277
Residuals	45	238.4	5.299	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

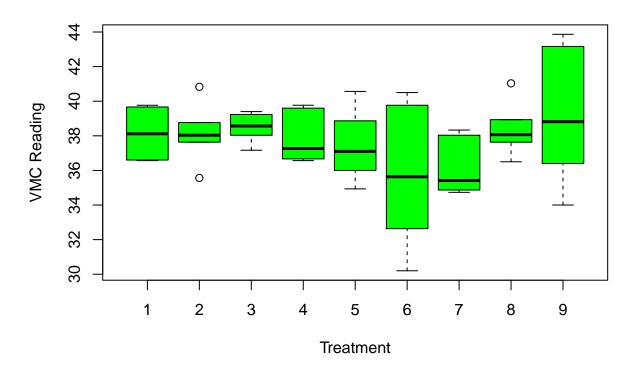
Groups and Standard error



Volumetric Moisture Content 163 Days post Treatment

Table 95: Analysis of Variance Model 163 Days post Treatment

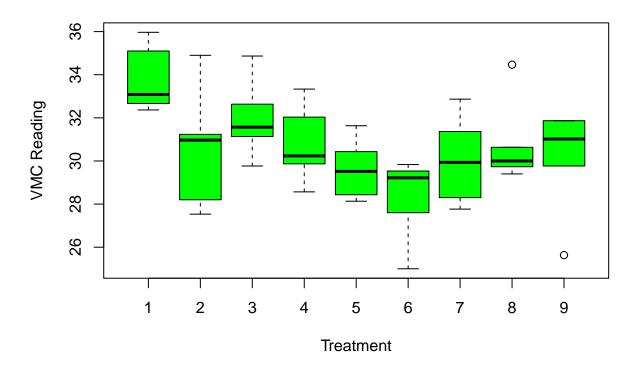
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	64.67	8.083	1.558	0.1648
Residuals	45	233.5	5.19	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Volumetric Moisture Content 165 Days post Treatment

Table 96: Analysis of Variance Model 165 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	80.84	10.11	1.745	0.1139
Residuals	45	260.5	5.789	NA	NA

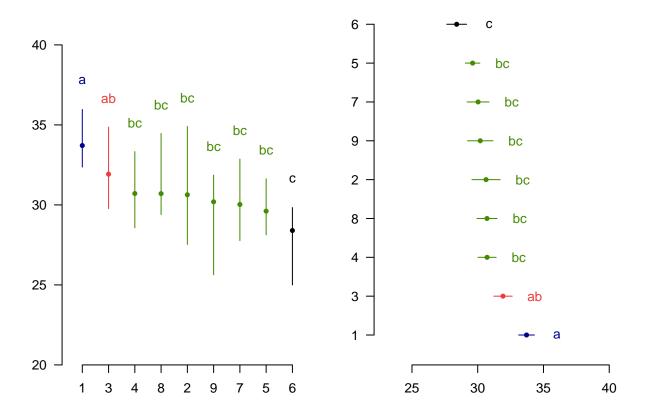


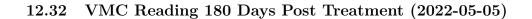
Volumetric Moisture Content 169 Days post Treatment

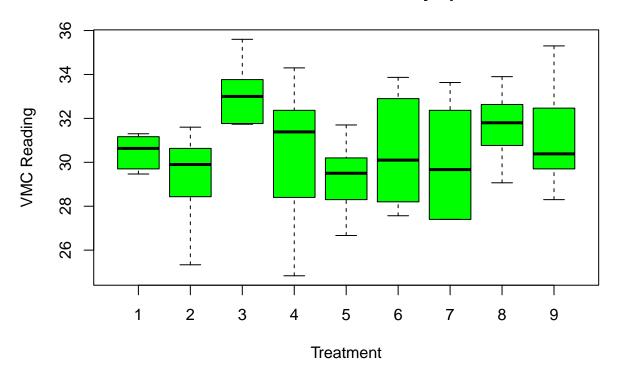
Table 97: Analysis of Variance Model 169 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	60.58	7.572	1.423	0.2134
Residuals	45	239.5	5.322	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

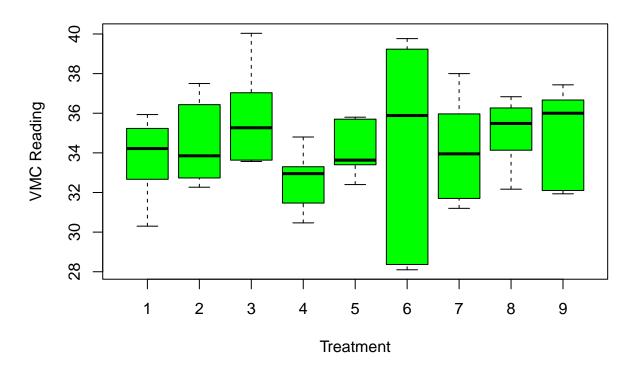

Volumetric Moisture Content 173 Days post Treatment


Table 98: Analysis of Variance Model 173 Days post Treatment


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	106.4	13.3	3.583	0.002706
Residuals	45	167	3.712	NA	NA

Groups and Range

Groups and Standard error

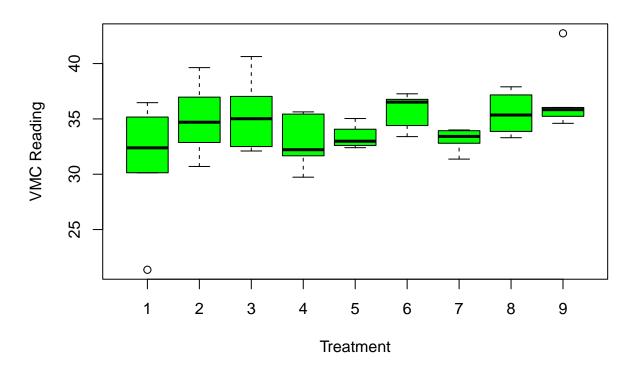


Volumetric Moisture Content 180 Days post Treatment

Table 99: Analysis of Variance Model 180 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	69.32	8.665	1.754	0.112
Residuals	45	222.3	4.94	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

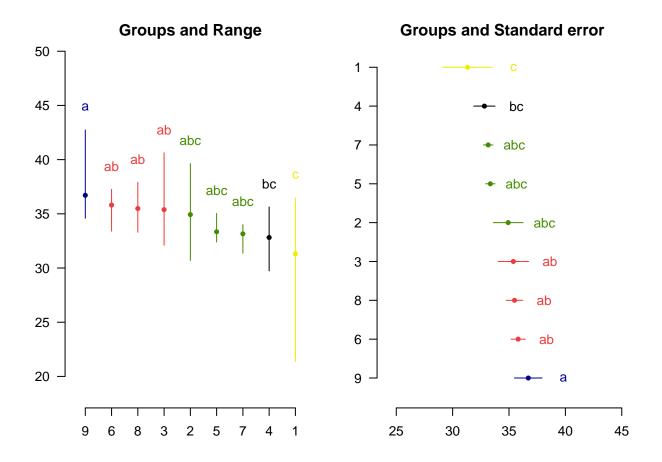


Volumetric Moisture Content 185 Days post Treatment

Table 100: Analysis of Variance Model 185 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	38.54	4.817	0.696	0.693
Residuals	45	311.4	6.921	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



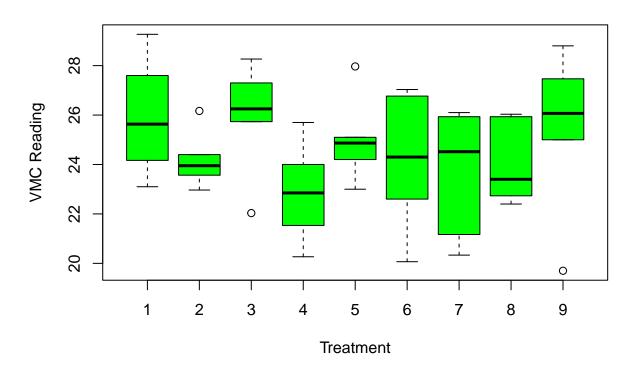
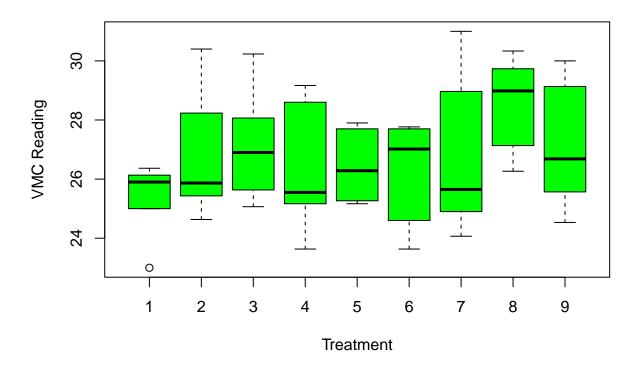

Volumetric Moisture Content 187 Days post Treatment

Table 101: Analysis of Variance Model 187 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	146.4	18.3	2.28	0.03845
Residuals	45	361.1	8.024	NA	NA

In the resulting ANOVA table above, the F-tests show that there is a significant difference in Treatment factor levels.

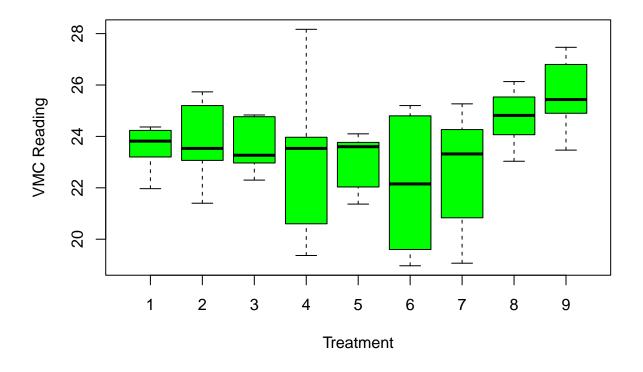


Volumetric Moisture Content 191 Days post Treatment

Table 102: Analysis of Variance Model 191 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	54.16	6.771	1.398	0.2234
Residuals	45	217.9	4.842	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.



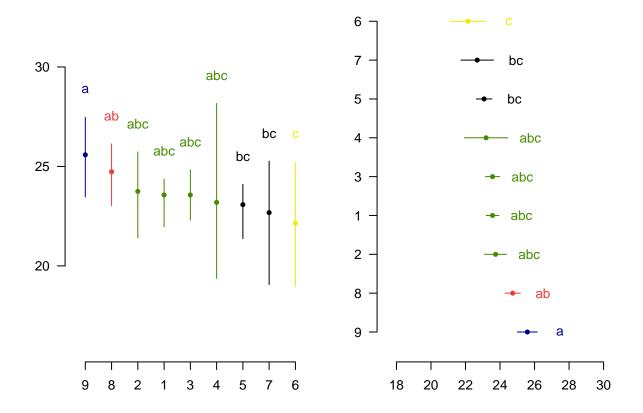
Volumetric Moisture Content 194 Days post Treatment

Table 103: Analysis of Variance Model 194 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	35.97	4.496	1.22	0.3094
Residuals	45	165.8	3.684	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Volumetric Moisture Content 200 Days post Treatment


Table 104: Analysis of Variance Model 200 Days post Treatment

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	51.88	6.485	1.939	0.07716
Residuals	45	150.5	3.344	NA	NA

In the resulting ANOVA table above, the F-tests show that there is no significant difference in Treatment factor levels.

Groups and Range

Groups and Standard error

13 Dollar Spot Infection Centres - DSIC

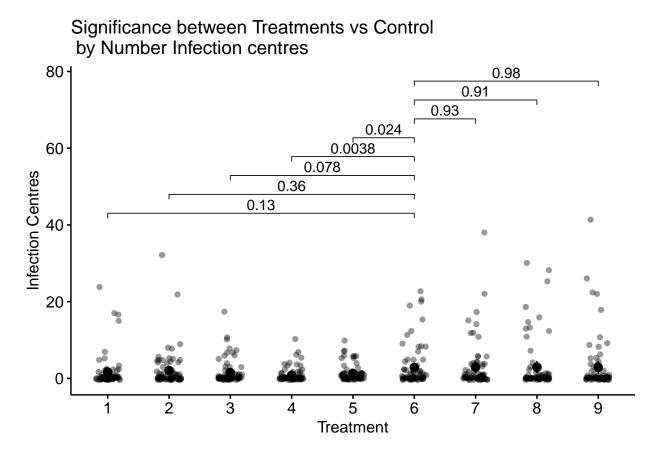
Treatment	n	DSIC	sd	se	ci
1	72	1.611	4.343	0.5118	1.021
2	72	2.056	4.881	0.5753	1.147
3	72	1.528	3.162	0.3727	0.7431
4	72	0.8333	1.876	0.2211	0.4409
5	72	1.264	2.188	0.2579	0.5142
6	72	2.847	5.432	0.6402	1.277
7	72	2.931	6.151	0.725	1.446
8	72	2.958	6.742	0.7945	1.584
9	72	2.875	7.079	0.8343	1.663

Table 105: Statistics by Treatment

The following table shows that dollar spot infection centres ranged from a mean low of 0.8333 (Treatment 4) to a high of 2.958 (Treatment 8).

Treatment	DSIC
1	1.611
2	2.056
3	1.528
4	0.8333
5	1.264
6	2.847
7	2.931
8	2.958
9	2.875

When this are shown graphically it can be seen that the Treatments can be divided into two distinct groups. Those that cause a reduction in dollar spot infection centres (Treatments 1,2,3,4 and 5) and those that don't cause any reduction compared to the untreated control.



Statistically significant differences between the treatements and the control were apparent with Treatments 4,5 showing less dollar spot infection centres.

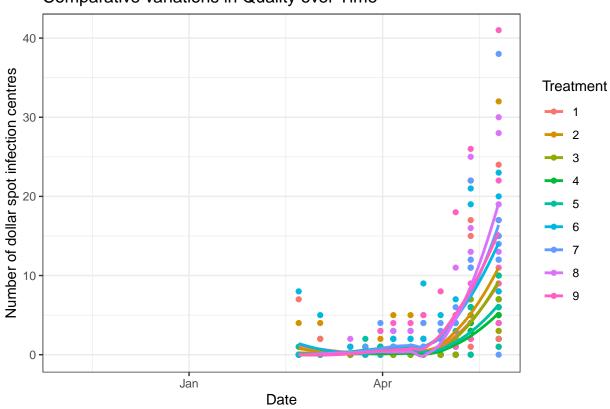
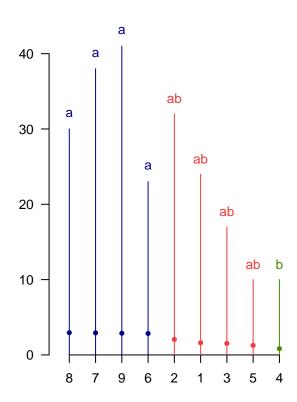

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.159	0.7321	1.583	0.1139
Treatment2	0.4444	0.8301	0.5354	0.5926
Treatment3	-0.08333	0.8301	-0.1004	0.9201
Treatment4	-0.7778	0.8301	-0.9369	0.3492
Treatment5	-0.3472	0.8301	-0.4183	0.6759
Treatment6	1.236	0.8301	1.489	0.137
Treatment7	1.319	0.8301	1.589	0.1125
Treatment8	1.347	0.8301	1.623	0.1051
Treatment9	1.264	0.8301	1.522	0.1284
Block2	0.1944	0.6778	0.2869	0.7743
Block3	1.13	0.6778	1.667	0.09609
Block4	0.5556	0.6778	0.8196	0.4127
Block5	-0.2222	0.6778	-0.3279	0.7431
Block6	1.056	0.6778	1.557	0.1199

Table 108: Significance of Results by Treatment

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
648	4.981	0.03446	0.01466

When we look at the between treatment effects we can see significant differences existed between the treatments in regard to leaf area.

Comparative variations in Quality over Time


Not surprisingly as time increased the incidence of dollar spot did also.

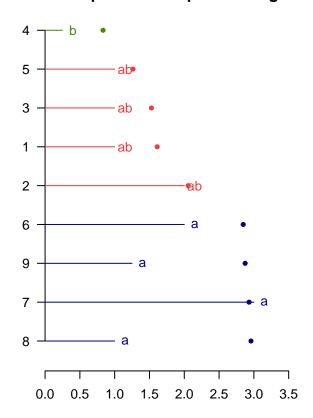
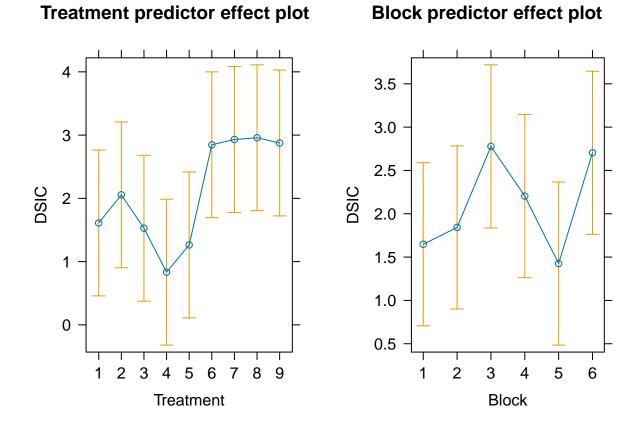
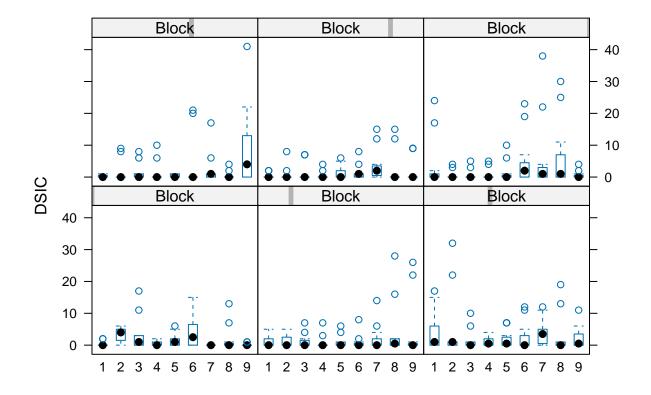

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
factor(Treatment)	8	392.9	49.12	1.974	0.04727
Residuals	639	15898	24.88	NA	NA

Table 110: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Block	5	168.4	33.68	1.88	0.09579
Treatment	8	392.9	49.12	2.742	0.005587
Date	1	3863	3863	215.6	3.716e-42
Treatment:Date	8	668.7	83.58	4.665	1.469e-05
Residuals	625	11197	17.92	NA	NA

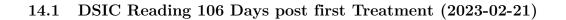
Groups and Range




Groups and Interquartile range

	,	- 7	က	4	- 5	9	2	ω I	တ ၂	– Average	
6 –	3.6	0.6	0.7	0.8	1.4	4.8	5.8	6.2	0.6	2.7	
5 –	0.3	0.8	1.2	0.5	1.3	1.4	3.5	2.2	1.5	1.4	8
4 –	0.2	1.4	1.4	1.3	0.4	3.4	2.3	0.5	8.8	2.2	6
3 –	4.1	5	1.6	1.1	1.8	2.4	4	2.9	2.2	2.8	4
2 –	1.1	1.2	1.2	0.8	1.1	0.9	2	4.2	4.1	1.8	2
1 —	0.3	3.2	3.2	0.5	1.6	4.1	0	1.8	0.2	1.6	
Average –	1.6	2.1	1.5	0.8	1.3	2.8	2.9	3	2.9	2.1	0

Figure 16: Dollar Spot Infection Centre plot means for Treatment and block


14 Block Effect with Treatment on Infection Centres

There appeared to be an interaction between both the Treatment and Block factors

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Block	1	18.4	18.4	1.415	0.2347
Treatment	8	392.9	49.12	3.778	0.000252
DAT	11	7621	692.8	53.29	6.809e-79
Treatment:DAT	88	1250	14.2	1.092	0.2783
Residuals	539	7008	13	NA	NA

Table 111: Significance of Results by Treatment, Block and Days after Initial Treatment

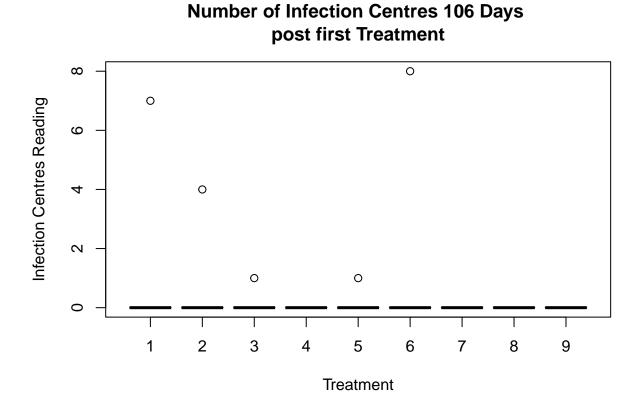
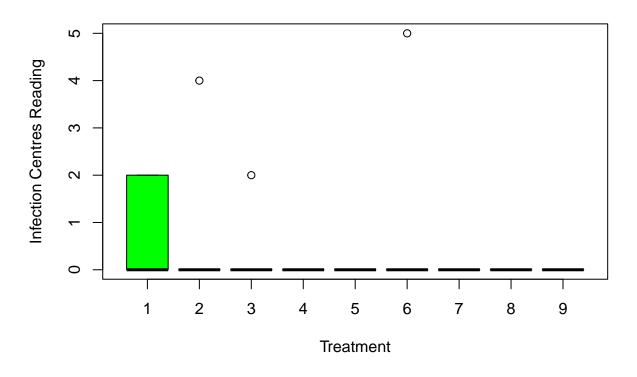
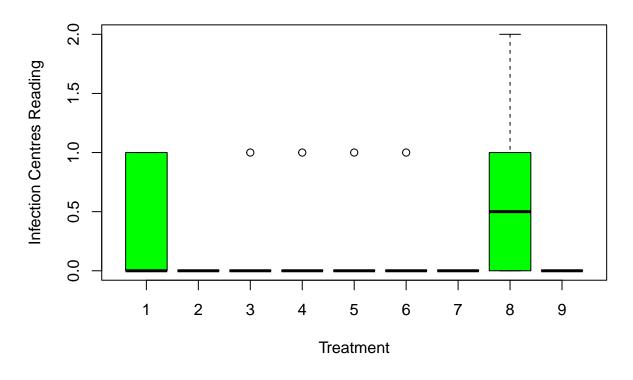



Table 112: Analysis of Variance Model

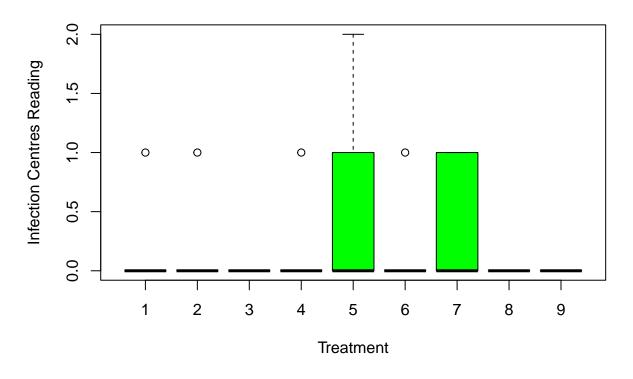
	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	13.67	1.708	0.7042	0.6861
Residuals	45	109.2	2.426	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference between treatments before the trial starts.

Number of Infection Centres 116 Days post first Treatment

Table 113: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6	0.75	0.7879	0.6157
Residuals	45	42.83	0.9519	NA	NA

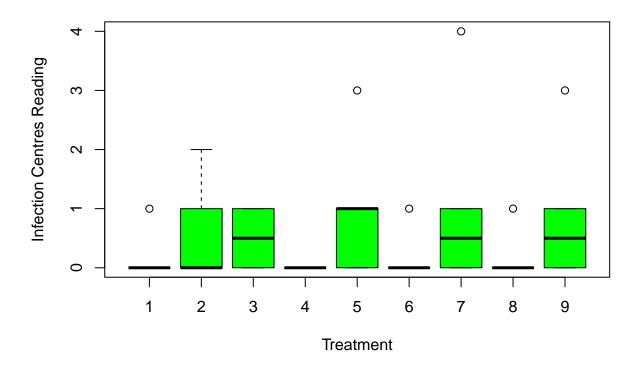


Number of Infection Centres 130 Days post first Treatment

Table 114: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	2.148	0.2685	1.51	0.1806
Residuals	45	8	0.1778	NA	NA

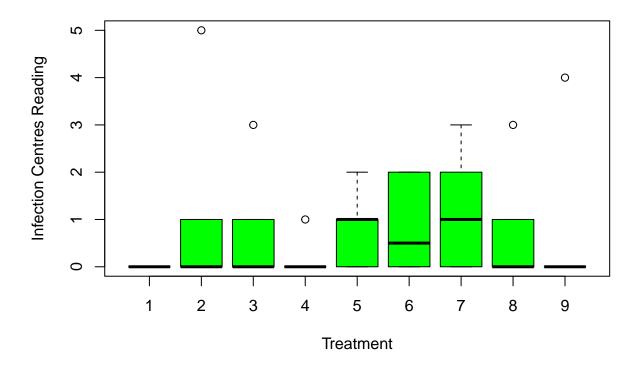
In the resulting ANOVA table above, the F-tests show that there is no significant difference between treatments before the trial starts.



Number of Infection Centres 137 Days post first Treatment

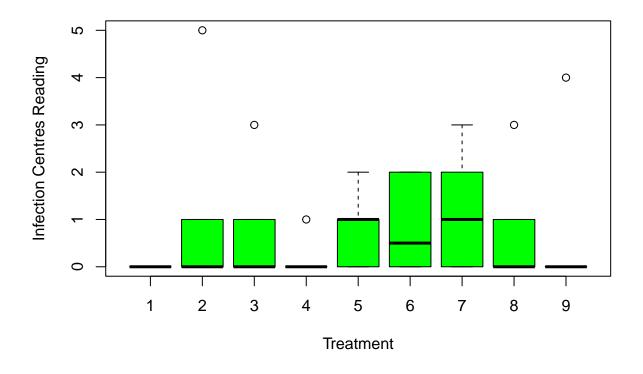
Table 115: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	1.333	0.1667	0.9184	0.5104
Residuals	45	8.167	0.1815	NA	NA


In the resulting ANOVA table above, the F-tests show that there is no significant difference between treatments before the trial starts.

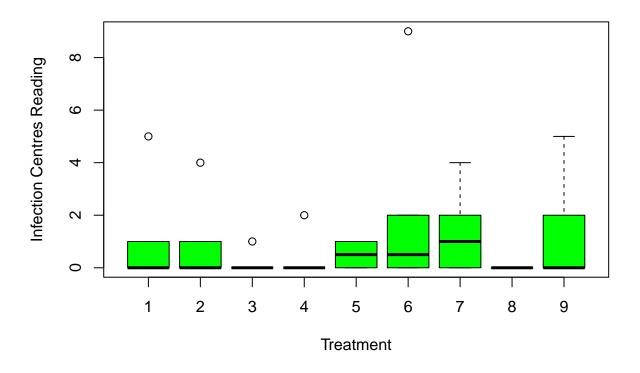
Number of Infection Centres 144 Days post first Treatment

Table 116: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	7.148	0.8935	1.244	0.2968
Residuals	45	32.33	0.7185	NA	NA

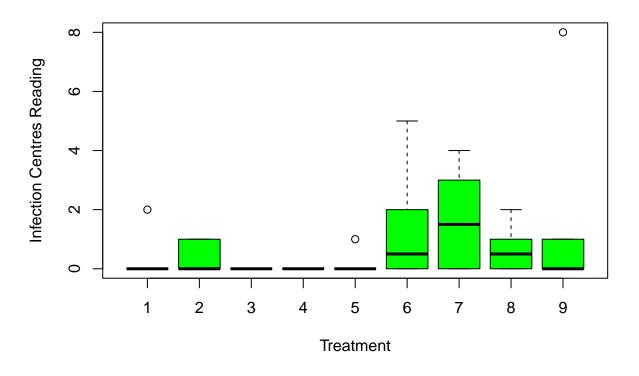
Number of Infection Centres 151 Days post first Treatment

Table 117: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6.667	0.8333	0.5921	0.7791
Residuals	45	63.33	1.407	NA	NA

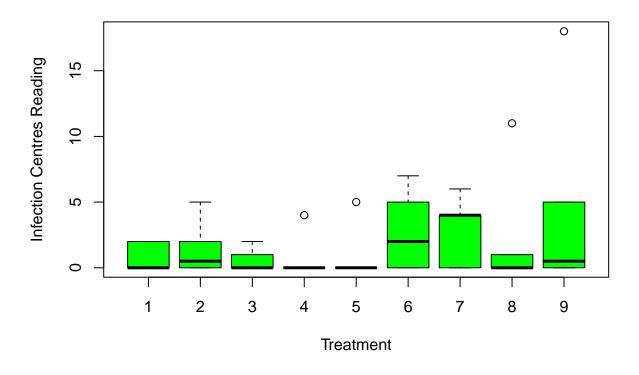
Number of Infection Centres 159 Days post first Treatment

Table 118: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	6.667	0.8333	0.5921	0.7791
Residuals	45	63.33	1.407	NA	NA

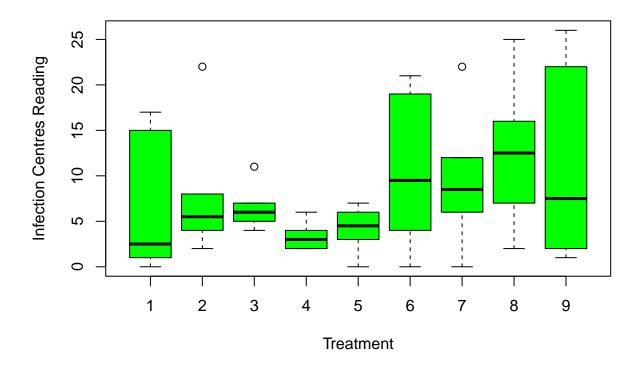
Number of Infection Centres 165 Days post first Treatment

Table 119: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	19.48	2.435	0.826	0.5842
Residuals	45	132.7	2.948	NA	NA

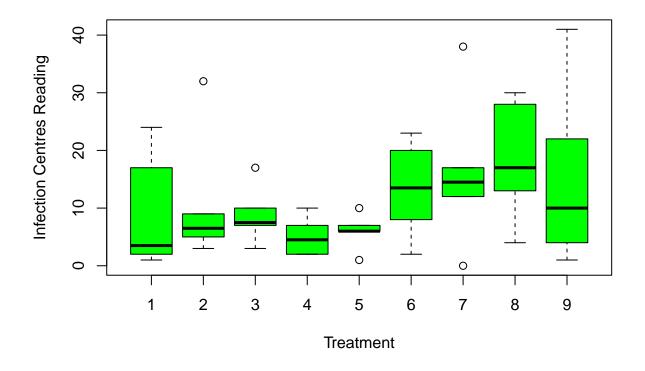
Number of Infection Centres 173 Days post first Treatment

Table 120: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	21	2.625	1.27	0.2829
Residuals	45	93	2.067	NA	NA

Number of Infection Centres 180 Days post first Treatment

Table 121: Analysis of Variance Model


	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	74.7	9.338	0.8652	0.5524
Residuals	45	485.7	10.79	NA	NA

Number of Infection Centres 187 Days post first Treatment

Table 122: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	475.6	59.45	1.27	0.2829
Residuals	45	2106	46.81	NA	NA

Number of Infection Centres 200 Days post first Treatment

Table 123: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
Treatment	8	1008	126.1	1.461	0.1983
Residuals	45	3882	86.26	NA	NA

15 References

Abetz P (1980). Seaweed extracts: have they a place in Australian agriculture or horticulture? J Aust Inst Agric Sci 46:23–29

Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S. (2021) Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PLoS ONE 16(12): e0260556. https://doi.org/10.1371/journal.pone.0260556

Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013). Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and gly-oxalase system. Aust J Crop Sci 7:1053–1063

Aslam M, Habib A, Talib Sahi S and Khan RR, Comparative study of Bion and salicylic acid applied through foliar and seedling root dipping in tomato against Alternaria solani-561-Applied Ecology and Environmental Research 17(1):561-574.

Bakker CJ, Swanton CJ, McKeown AW (2009) Broccoli growth in response to increasing rates of plant nitrogen. I. Yield and quality. Can J Plant Sci 89:527–537

Bauer SJ, Cavanaugh, MJ and Horgan BP, (2017). Wetting Agent Influence on Putting Green Surface Firmness, International Turfgrass Society Research Journal, 13, 1, (624-628).

Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory J (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

Bi F, Iqbal S, Arman M, Ali A, and Hassan MU (2011). Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc. 15, 269–273. doi: 10.1016/j.jscs.2010.10.003

Bially PT,1 Kostka SJ, and Richard C. Buckman RC (2005). Improving the Infiltration of Water through Repellent Soils Using Synergistic Surfactant Blends Based on Alkyl Glucosides and Ethylene Oxide-Propylene Oxide Block Copolymers.Journal of ASTM International, November/December, Vol. 2, No. 10 Paper ID JAI12914

Blunden G, Cripps AL, Gordon SM, Mason TG, Turner CH (1986a) The characterisation and quantitative estimation of betaines in commercial seaweed extracts. Bot Mar 24:155–160

Blunden G, Gordon SM, Crabb TA, Roch OG, Rowan MG, Wood B (1986b) NMR spectra of betaines from marine algae. Magn Reson Chem 24:965–971

Booth B (1969) The manufacture and properties of liquid seaweed extracts. Proc Intl Seaweed Symp $6:\!655-662$

Brown TB, Cheng R, Sirault XRR, Rungrat T, Murray KD, Trtilek M, Furbank RT, Badger M, Pogson BJ, Borevitz JO (2014) TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol 18:73–79

Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3-41

Cassidy ST, Burr AA, Reeb RA, Melero Pardo AL, Woods KD, and Wood CW (2020). Using clear plastic CD cases as low-cost mini-rhizotrons to phenotype root traits. Applications in Plant Science. 8:4 https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/aps3.11340

Conrath, U (2006). Systemic acquired resistance. Plant Signaling & Behavior, 1, 179–184.

Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015). Priming for enhanced defense. Annu. Rev. Phytopathol. 53 97-119. 10.1146/annurev-phyto -080614-120132

Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

Crouch IJ, Smith MT, van Staden J, Lewis MJ, Hoad GV (1992) Identification of auxins in a commercial seaweed concentrate. J Plant Physiol 139:590–594

Crouch, IJ, van Staden, J, (1993). Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation 13, 21-29.

Dimsey R (2009) Broccoli. Agnote AG0074. Victorian Department of Primary Industries, Melbourne

Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136

Donald EC, Porter IJ (2009) Integrated control of clubroot. J Plant Growth Regul 28:212–228

Donald EC, Jaudzems G, Porter IJ (2008) Pathology of cortical invasion by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica oleracea hosts. Plant Pathol 57:201–209

Du Jardin P (2012) The science of plant biostimulants—a bibliographical analysis. Retrieved from The science of plant biostimulants—a bibliographical analysis. Retrieved from http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final_report_bio_2012_en.pdf on 19 June 2014.

Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol $149{:}7{-}13$

Gonzalez A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448

Gonzalez, A, Contreras, RA, and Moenne, A. (2013b). Oligo-carrageenans enhance growth and contents of cellulose, essential oils and polyphenolic compounds in Eucalyptus globulus trees. Molecules 18, 8740–8751. doi: 10.3390/molecules18088740

Ha CV, Leyva- Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LSP (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856

He YL, Liu YL, Chen Q, Bian AH. (2002). Thermotolerance related to antioxidation induced by salicylic acid and heat hardening in tall fescue seedlings. J. Plant Physiol. Mol. 28 89-95

Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

Henderson J (2004) The Roman book of gardening. Routledge, London, 152 pp

Herrera Medina MJ, Gagnon H, Pichi Y, Ocampo JA, Garcia Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164: 993-998.

Hosseini SM, Kafi M and Arghavani M (2016) The effect of Salicylic acid on physiological characteristics of Lolium grass (Lolium perenne cv."Numan") under drought stress. Int. J. Agron. Agric. Res 7, 7-14

Hsiang, T, Stone K, Rudland, M and Chen L (2022) Non-conventional fungicides to control dollar spot disease. International Turfgrass saociety Research Journal, Vol 14, Issue 1, pp831-834

Jannin L, ArkounM, Etienne P, Lainé P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina J, Yvin J, Ourry A (2013) Brassica napus growth is promoted by Ascophyllum nodosum (L.)

Le Jol. seaweed extract:microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31-52

Johnsen, A, Leeper K, and Horgan B. 2011 wetting solution study and analysis 2012. Hole Notes. June. 44(5):16-19, 22-25.

Karnok KJ., Xia K, and Tucker KA.(2004). Wetting agents: What are they, and how do they work?: A better understanding of how wetting agents work will lead to their more effective use on the golf course. Golf Course Manage. 72: 84–86.

Khan W, Prithiviraj B and Smith DL (2003).Photosynthetic responses of corn and soybean to foliar application of salicylates J. Plant Physiol.Volume 160, Issue 5, 485-492

Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. (2015). Salicylic acid- induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6:462. 10.3389/fpls.2015.00462

Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399

Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum extractinduced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414

Khan W, Zhai R, Souleimanov A, Critchley AT, Smith DL, Prithiviraj B (2012) Commercial extract of Ascophyllum nodosum improves root colonization of alfalfa by its bacterial symbiont Sinorhizobium meliloti. Commun Soil Sci Plant 43:2425–2436

Klessig DF, Malamy J. (1994), The salicylic acid signal in plants, Plant Molecular Biology, vol. 26 (pg. 1439-1458)

Kumar, D. (2014) Salicylic acid signaling in disease resistance. Plant Science, 228, 127–134.

Kurepin LV, Zaman M, Pharis RP (2014) Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. J Sci Food Agric 94:1715–1722

Larkindale, J, and Knight, MR. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682–695. doi: 10.1104/pp.010320

Larkindale J, Hall JD, Knight MR, Verling E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138 882-897. 10.1104/pp.105.062257

Leinauer, B. (2005) Wetting agent study: Update, New Mexico: Golf Course Management 73:74

Leinauer, B, Karcher, D, Barrick, T, Ikemura, Y, Hubble, H, and Makk, J. (2007). Water repellency varies with depth and season in sandy rootzones treated with ten wetting agents. Online. Applied Turfgrass Science doi:10.1094/ATS-2007-0221-01-RS.

Linde D.T., Stowell L.J., Gelernter W., and McAuliffe K.. 2011. Monitoring and managing putting green firmness on golf courses. Appl. Turfgrass Sci. 8 (1): 1–9.

Mercier L, Laffite C, Borderies G, Briand X, Esquerré-Tugayé, MT, Fournier J. (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence New Phytol, 149, pp. 43-51

Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5: 4-8.

Moeller A., Bigelow C.A., Nemits J.R., and Hardebeck G. 2007. Putting green surface hardness as affected by wetting agent applications. International Annual Meetings Abstracts. ASA, CSSA, SSSA, Madison, WI.

Nabati DA, Schmidt RE, Parrish DJ (1994) Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron. Crop Sci: 34(1): 198–202.

Rahman A, Kuldau GA, and Uddin W (2014) Induction of Salicylic Acid–Mediated Defense Response in Perennial Ryegrass Against Infection by Magnaporthe oryzae. The American Phytopathological Society (APS). Vol 104 No 6, pp614-623

Raskin I. (1992) Role of Salicylic Acid in Plants. Annual Review of Plant Biology, 43, 439- 463. http://dx.doi.org/10.1146/annurev.pp.43.060192.002255

Senaratna T, Touchell D, Bunn E and Dixon K, "Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants". Plants Growth Regul, 30. 157-161. 2000.

Shahgholi M, Naderi D, Etemadi N, Eghbalsaied S and Shiranibidabadi S (2013). Salicylic acid and trinexapac-ethyl affect on chlorophyll content and shoot properties of Lolium perenne cv. Speedy Green. International Journal of Agriculture and Crop Sciences, 6: 1123-1126.

Shirasu, K, Nakajima, H, Rajasekhar VK, Dixon, RA. and Lamb C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261–70.

Stephenson WA, (1968). Seaweed in agriculture and horticulture. Faber and Faber, London

Stirk WA, van Staden J (1997) Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. J Appl Phycol 8:503–508

Stirk WA, Tarkowska D, Turecova V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in Kelpak, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26:561–567

Tay SAB, MacLeod JK, Palni LMS, Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochemistry 24:2611-2614

Tay SAB, Palni LMS, MacLeod JK (1987) Identification of cytokinin glucosides in a seaweed extract. J Plant Growth Regul 5:133–138

Traw, M.B. and Bergelson, J. (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133, 1367–1375

Wang et al (2010)

Zhang X, Ervin EH. (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 48(1):364–70.

•••